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Recent Advances in C-Glycoside Chemistry: Application, Synthesis and 
Reactions 

Abstract: The synthesis of C-glycosides, sugar analogs in which glycosidic oxygen is 
substituted by a carbon atom, is of particular interest due to their usefulness as key 
intermediates for assembling biologically active molecules and natural products. Despite 
their challenging chemistry, due to their versatility, C-glycosides play a pivotal role in the 
development of the chemistry of novel materials and bioactive molecules. In this review, 
we present of various synthetic methodologies, mechanistic proposal and application 
for 2,3-unsaturated C-glycosides in the last twenty years. 
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Resumo 

A síntese de C-glicosídeos, análogos de açúcar em que o oxigênio glicosídico é 
substituído por um átomo de carbono é de particular interesse devido à sua utilidade 
como intermediários chave para a montagem de moléculas e produtos naturais 
biologicamente ativos. Apesar da sua química desafiadora, devido à sua versatilidade, 
os C-glicosídeos desempenham um papel fundamental no desenvolvimento da química 
de novos materiais e moléculas bioativas. Nesta revisão, apresentamos várias 
metodologias sintéticas, proposta mecanicista e aplicação de C-glicosídeos 2,3-
insaturados nos últimos vinte anos. 
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1. Considerações introdutórias 
sobre C-Glicosídeos 

 

C-Glicosídeos são análogos de carboidratos 
que possuem um átomo de carbono 
substituindo o oxigênio envolvido na ligação 

glicosídica. A presença da ligação carbono-
carbono envolvendo o carbono anomérico do 
anel piranosídico ou furanosídico, confere a 
estes uma maior resistência à hidrólise 
química e enzimática. Os C-glicosídeos estão 
envolvidos em diversos papéis importantes 
nos organismos vivos, tais como fonte de 
energia, na etapa de crescimento da planta 
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atuando na regulação e estimulante muscular 
cardíaco.1 

Dentre as diferentes classes de 
carboidratos um grande destaque é dado para 
os glicais,2 os quais são largamente utilizados 
na síntese dos mais diversos tipos de O-

glicosídeos,3-10 C-glicosídeos,11-18 S-
glicosídeos,19-27N-glicosídeos28-35 e vários tipos 
de oligossacarídeos (Figura 1);36 além de 
serem utilizados como blocos de construção 
para síntese de 2-desoxi-hexoses e 2-desoxi-2-
amino-hexoses e na síntese de produtos 
naturais oticamente ativos.37 

 

 

Figura 1. Exemplos de estruturas-base de C-, N-, -S e O-glicosídeos 2,3-insaturados 

 

Além disso, os C-glicosídeos 2,3-
insaturados ou pseudoglicais são uma fonte 
versátil de intermediários quirais para a 
síntese de carboidratos modificados e 
nucleosídeos com importantes propriedades 
biológicas.38 

Nos últimos anos é perceptível o aumento 
considerável no número de publicações 
envolvendo o tema “C-glicosídeos”, por 
exemplo, apenas no ano de 2016 foram 

contabilizados mais de 100 artigos publicados 
e mais de 3000 citações sobre esse tema 
(Figura 2), o que demonstra o grande 
interesse da comunidade cientifica. 

Devido à importância, relevância e 
abundância de C-glicosídeos, nesta revisão 
são apresentados alguns tópicos sobre as 
aplicações como compostos biologicamente 
ativos e também como materiais funcionais; 
sua síntese e reações. 
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Itens publicados por ano                               Citações em cada ano 

 

(A)                                                                      (B) 

Figura 2. (A) Número de artigos publicados e (B) número de citações sobre C-glicosídeos entre 
2000-2017 

 

2. Aplicações de C-Glicosídeos 

 

2.1. C-glicosídeos com aplicações em 
química de compostos bioativos 

 

Os C-glicosídeos 2,3-insaturados possuem 
como aglicona grupos alquílicos, arílicos ou 
glicosídicos, os quais geralmente são 
utilizados como blocos de construção para 
síntese de moléculas mais complexas. Esta 
unidade estrutural está presente em muitos 
produtos naturais biologicamente ativos,39,40 
tais como, a Aspalatina (Figura 3) um C-
glicopiranosídeo que possui propriedades 

antioxidante, antimutagênica e efeitos 
benéficos sobre a homeostase da glicose em 
Diabetes tipo 2.41 De acordo com Han e 
colaboradores41 esforços para sintetizar a 
Aspalatina, através de um processo que 
envolve o intermediário de chalcona, 
falharam. Além disso, ainda segundo os 
autores, a C-glicosilação de acetofenona 
proporcionou o intermediário aril C-glcosil 
cetona como traços. Isto foi provavelmente 
devido à desativação do nucleófilo aromático 
pelo grupo carbonílico. Essa nucleofilicidade 
reduzida foi provavelmente ainda composta 
pela complexação do ácido de Lewis, atuando 
como catalisador, com o oxigênio da 
carbonila. 

 

 

Figura 3. Estrutura da Aspalatina 

 

Outro exemplo de C-glicosídeo isolado de 
produtos naturais foi a Ambruticina S, um 
poderoso agente antifúngico. Este foi isolado 

a partir Polyangium cellulosum var, fulvum ou 
mesmo ser realizada sua síntese total.42 
Conforme Julien et al.,42 este composto 
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consiste em um anel de pirano ligado a uma 
cadeia de alceno ramificada com as ligações 
duplas fora da conjugação. As principais 
ambruticinas diferem em C5, tendo um grupo 

hidroxilo ou um grupo amino metilado para 
diferentes níveis. A estrutura da Ambruticina 
S é mostrada na figura 4 abaixo. 

 

 

Figura 4. Estrutura da Ambruticina S 

 

A importância desta classe de compostos 
não está relacionada somente ao fato de se 
apresentar na estrutura de diversos produtos 
naturais, mas também pelo fato dos C-
glicosídeos apresentar resistência à hidrólise 
ácida e enzimática,43 o que confere a eles a 
possibilidade de serem estudados como 
fármacos estáveis.  Além disso, os C-
glicosídeos 2,3-insaturados diferentemente 
dos O-glicosídeos, não sofrem o efeito exo-
anomérico, permitindo assim estruturas 
relevantes para estudos sobre a conformação 
em torno da ligação da parte aglicônica com o 
anel piranosídico.44 

Por outro lado, os C-glicosídeos estão 
envolvidos em muitos processos de 
reconhecimento biológicos, como por 
exemplo, comunicação entre células,45,46 
transdução de sinal,47-49 adesão bacteriana e 
viral,50-52e respostas do sistema imune.53-57 
Esse tipo de comportamento imunológico, nos 
últimos anos, vem levando ao 
desenvolvimento de pesquisa inovadoras para 
vacinas antitumorais.58 

 

2.2. C-glicosídeos com aplicações em 
química de novos materiais 

 

Os C-glicosídeos são bastante utilizados 
como géis na química de nanomateriais.59 No 
processo de gelificação as forças responsáveis 
pela formação da rede de imobilização no gel 
podem estar relacionadas com ligações de 
hidrogênio, interações π-π (aromática), forças 
de van der Waals, ligação iônica, ligação de 
coordenação de organometálicos, ou, na 
maioria dos sistemas, a combinação 
destas.60,61As interações não direcionais como 
dipolo-dipolo e dispersão de London também 
podem estar presentes no agregado fibrilar, 
agindo como forças cooperativas.

62 Por outro 
lado, os géis supramoleculares são diferentes 
dos géis macromoleculares, pois podem ser 
encadeados entre líquidos que fluem 
livremente e materiais que não fluem de uma 
maneira reversível.63-72 

A utilização de C-glicosídeos se destaca 
também na síntese de novos materiais 
funcionais, como por exemplo, os compostos 
7-10, são materiais nanoestruturados que 
possuem propriedades físico-químicas 
interessantes incluindo a capacidade de 
formar gel (Figura 5).73 
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Figura 5. C-glicosídeos com propriedades físico-químicas e capacidade de formar gel 

 

Diversos tipos de gelificantes orgânicos de 
baixo peso molecular são descritos na 
literatura,74 por apresentar habilidades 
específicas de gelificar uma grande variedade 

de líquidos. Dentre eles, podem ser 
encontrados derivados de monossacarídeos.75 
A Figura 6 sumariza outros exemplos de C-
glicosídeos com propriedades gelificantes. 

 

 

Figura 6. Exemplos de C-Glicosídeos com propriedades gelificantes 

 

Além das aplicações supracitadas, foram 
relatados C-glicosídeos obtidos da D-glicose e 
derivados da cumarina (Figura 7) com 
aplicações na área de materiais sendo usados 
como sondas luminescentes para 
determinação de albumina em soro bovino.76  

Todavia, os sensores fluorescentes 
apresentaram vantagens em termos de 
sensibilidade e seletividade. Logo, o 
desenvolvimento de sensores fluorescentes 
para várias proteínas ganhou crescente 
atenção. 
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Figura 7. Estrutura do C-glicosídeo contendo derivado da cumarina como aglicona 

 

Alguns C-glicosídeos com propriedades de 
cristais líquidos foram relatados na literatura 
(Figura 8).77-80 Em 2001, Bertini et al.,75 
relataram a síntese dos compostos 17, 18, 19 
e 20 com propriedades de cristais líquidos. 

Segundo os autores, as propriedades 
mesogênicas destes compostos são 
fortemente influenciadas pela presença do 
grupo fenila na molécula. 

 

 

Figura 8. C-glicosídeos com propriedades de cristais líquidos 

 

3. Síntese de C-Glicosídeos 2,3-
Insaturados 

 

A construção de uma ligação C-C entre uma 
unidade monossacarídica e uma cadeia 
lateral, denominada de aglicona, pode ser 
realizada de diversas maneiras. A adição de 
um nucleófilo a uma espécie eletrofílica de um 

açúcar é, sem dúvida, o método mais 
utilizado. 

A síntese de "C-pseudoglical" ou C-
glicosídeo 2,3-insaturados recebeu ampla 
atenção, uma vez que a ligação dupla no C (2) 
-C (3) presente no anel piranosídico pode ser 
utilizado como bloco de construção na síntese 
de diversas substâncias.81-83 Embora tenham 
sido desenvolvidos vários sistemas de 
reagentes para a formação de ligações C-C na 
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posição anomérica de C-glicosídeos 2,3-
insaturados,  dentre estas se destacam:  (a) 
glicosilação de Ferrier,84-85(b) metilenação de 
Tebbe e rearranjo de Claisen térmico,86 (c) 
glicosilação mediada por Pd,87,88 (d) C-
glicosilação de alquinos não ativadas 
catalisada por Cu (OTf)2/ácido ascórbico,89(e) 
C-alquinilação com sililacetileno,90 
alquiniltrifluorboratos91 e iodeto de alquila,92 
(f) acoplamento cruzado de Heck93 de 
halogenetos de arila,87de aril ácidos 
borônicos,94  de ácidos benzóicos, 95 e de aril 
hidrazinas96 para a síntese de aril-C-
glicosídeos. 

Muitos desses métodos possuem várias 
desvantagens, como o uso de reagentes 
ácidos, tóxicos, sensíveis à umidade e 
oxidantes fortes; o uso de aditivos, como 
bases fortes e ligantes a base de fosfina, que 
requer alta temperatura e excesso de 
reagentes, o qual envolve operação de reação 
não convencional e trabalho tedioso, 
oferecendo ao final compostos com baixa 
seletividade anomérica e baixos rendimentos.  

Em geral, os C-glicosídeos 2,3-insaturados 
podem ser obtidos a partir do rearranjo de C-

Ferrier, reação que é considerada uma das 
abordagens mais difundidas para este fim. De 
acordo com a literatura, muitos nucleófilos e 
promotores já foram descritos na síntese 
destes compostos.97 Em paralelo a esta 
abordagem, temos as reações de 
acoplamento que vem ganhando destaque na 
síntese dos carboidratos e que tem como 
características marcantes a utilização de 
metais de transição, em especial o uso do 
paládio.98,99 

 A literatura descreve o rearranjo de C-
Ferrier como um dos métodos mais utilizados 
para obtenção de C-glicosídeos 2,3-
insaturados o qual envolve uma reação de 1,2-
glicais com nucleófilos sobre catálise de um 
ácido de Lewis com perda concomitante de 
um substituinte em C-3 (Esquema 1).100-103 
Convém destacar que a aproximação do 
nucleófilo pode ocorrer pelas duas faces, 
desta forma, em geral, é obtida uma mistura 
de isômeros: o α-anômero e o β-anômero. Em 
seguida são descritos alguns fatores, tais 
como, repulsão estérica e assistência 
anquimérica responsáveis pela quimio-, regio- 
e estereosseletiva das reações de C-Ferrier. 

 

 

Esquema 1. Síntese de C-glicosídeo 2,3-insaturados a partir de 1,2-glicais 

 

3.1. Conformação, assistência 
anquimérica e regiosseletividade da reação 
de C-Ferrier 

 

Na síntese de C-glicosídeos 2,3-
insaturados, a quimio, régio e a 
estereosseletividade destes compostos são 
controladas por diversos fatores, dentre eles 
podemos citar as interações estéricas, a 

assistência anquimérica, o tipo de nucleófilo 
dentre outros. 

 

Interações estéricas 

 

Um fator que influência o rearranjo C-
Ferrier é o impedimento estérico. De acordo 
Bokor et al.,1 a parte aglicônica aromática de 
um C-glicosídeo 2,3-insaturado influencia na 
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seletividade e na conformação do anel de 
piranosídeo. Segundo os autores, após o 
estudo de anomerização concluíram que a 
conformação do anel piranosídico é ditada 
pela preferência de aglomerados aromáticos 
volumosos para se orientar de forma 
equatorial. Fenóis ricos em elétrons, tais como 
3,4,5-trimetoxifenol é um doador glicosídico 
(por exemplo, tricloroacetimidato ou fosfato) 
e proporciona o acoplamento direto ao 
correspondente C-glicosídeo tendo como 
aglicona grupo aril com configuração no β no 
carbono anomérico.1 

Woerpel e colaboradores,104 realizaram um 
conjunto de experimentos usando acetais de 
tetrahidropirano para estabelecer o efeito 
estabilizador/desestabilizador dos 
substituintes nas posições 2, 3, 4 e 5 do anel 
piranosídeo. Segundo os autores, esses 
efeitos influenciam o equilíbrio entre os 
diferentes confôrmeros (3H4 e 4H3) e, portanto, 
controlam a estereoseletividade na 
substituição nucleofílica do íon 
oxacarbênio.104 Por outro lado, Ionescu et 
al.,105 relataram que os substituintes 
eletronegativos (OH) favorecem as posições 
axiais em C-3 e C-4, em oposição a uma 
orientação equatorial que é favorecida do 
ponto de vista estérico. Este dado foi 

corroborado com valores obtidos 
experimentalmente, no conjunto de alilações 
representado no Esquema 2. Por exemplo, a 
alilação do 4-O-benzil 22 (R = OBn) usando 
aliltrimetilsilano e sob a ação do catalisador 
BF3•OEt2 produziu quase exclusivamente o 
produto 1,4-trans, enquanto o acetal 23 (R = 
CH2Bn) forneceu principalmente o produto 
1,4-cis. A seletividade nesta C-glicosilação foi 
atribuída à diferença de estabilidade dos 
intermediários envolvidos, ou seja, dos íons 
oxacarbênio. O íon oxacarbênio 27 com R = 
CH2Bn é favorecido em relação ao 28 em que 
o grupo alquílico está orientado axialmente, 
isto devido a interações estéricas 
desfavoráveis do último. As seletividades dos 
anéis piranosídeos substituídos em C3 podem 
ser explicadas de forma análogas.106-107 
Conforme ilustrado no Esquema 2, o grupo 
alquílico no C-2 substituído (35) parece ter 
pouco efeito sobre o desfecho 
estereoquímico, onde um C-2 benziloxipirano 
(36) proporciona principalmente o produto 
1,2-cis. Espera-se que a preferência pelo íon 
oxacarbênio C-2 benziloxi 36 (R = OBn) possa 
evoluir a partir da hiperconjugação entre a 
ligação axial CH e o orbital 2p no carbono 
eletrofílico.108 A susceptibilidade trans do anel 
piranosídico substituído C-5 41, deve-se as 
interações estéticas.109-110 
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Esquema 2. Fatores que afetam a estereosseletividade no Rearranjo de C-Ferrier 

 

Assistência Anquimérica 

 

A assistência anquimérica é um dos fatores 
que podem influenciar a formação exclusiva 
na estereoseletividade da reação glicosilação. 
Algumas propostas sugerem a participação do 

grupo acetoxi ligados ao carbono 2 do anel 
piranosídico mediando essa assistência 
(Figura 9). O grupo acetoxi em C-2 bloqueia a 
posição alfa e favorece a entrada de nucleófilo 
ricos em elétrons para dar exclusivamente o 
anômero β. 
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Figura 9. Assistência anquimérica em síntese de C-glicosídeos 

 

Em 1997, Minehan et al., utilizou um grupo 
acetato na posição do C-2 como facilitador na 
seletividade do anômero isto possibilitou 
a síntese de produtos naturais apresentando 
o C-aril glicosídeo. O mecanismo proposto 
envolve a assistência anquimérica.111 

Recentemente, Reddy et al.,112 relataram a 
seletividade em torno do anômero α quando 

estudavam as reações de glicosilação, 
propondo um mecanismo que envolvia a 
assistência anquimérica proveniente do 
oxigênio ligado no C-6 ao carbono anomérico, 
gerando um novo anel de cinco membros. 
Esse cátion 57 apresenta a posição beta 
bloqueada o que explica a formação exclusiva 
de α-glicosídeo 55 (Esquema 3). 

 

Esquema 3. Assistência anquimérica proveniente do oxigênio ligado no C-6 proposta por 
Reddy 
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Tipo do nucleófilo 

 

Como os C-glicosídeos 2,3-insaturados (ao 
contrário dos O-glicosídeos) não são 
estabilizados pelo efeito exo-anomérico, os 
mesmos apresentam preferências 
conformacionais semelhantes em torno da 
ligação C-C exocíclica. 

Entre os nucleófilos de carbono utilizados 
para as reações de C-Ferrier, os 
aliltrimetilsilanos (ATMS) têm sido mais 
importantes. Os primeiros exemplos de tais 

reações foram relatados por Danishefsky et 
al.113 em que diferentes glicais foram 
submetidos a deslocamento nucleofílico e 
migração de ligação dupla na presença de 
quantidades equimolares de TiCl4, como um 
ácido de Lewis (Esquema 4). As reações foram 
altamente regiosseletivas com a adição de 
grupo alílico na posição C1 e mudança de 
ligação dupla para C2-C3. A reação prossegue 
com preferência em relação ao ataque na 
posição α, mas a seletividade variou a 
estereoquímica, no que se refere ao ataque de 
outros grupos ao anel piranosídico. 

 

 

 

Esquema 4. Aliltrimetilsilanos (ATMS) nucleófilos de carbono utilizados para as reações de C-
Ferrier 

A natureza do nucleófilo em geral 
determina a regiosseletividade do rearranjo 
alílico, pois o nucleofílico pode atacar tanto 
carbono C-1 como o C-3 do composto 59. No 
rearranjo de C-Ferrier, o nucleófilos 
favorecem a formação de C-glicosídeos 2,3-
insaturados.114 A regiosseletividade do 
rearranjo alílico de C-Ferrier segue os 
princípios da  teoria dos ácidos e bases duros 
e moles. Assim, nucleófilos duros são 
direcionados ao C-1 e formam, assim, 
glicosídeos 2,3-insaturados; enquanto que 
nucleófilos moles preferem o ataque ao sítio 
reativo C-3 formando glicosídeos 1,2-
insaturados.115 

Vários nucleófilos e diferentes 
catalisadores são descrito na literatura 
abordando a seletividade α/β, a suavidade do 
método, o efeito do solvente, o efeito do 
catalisador ácido (ou ácido de Lewis) e os 

rendimentos dos C-glicosídeos 2,3-
insaturados.99 

 

3.2. Rearranjo de C-Ferrier 

 

Uma das reações mais difundidas para 
obtenção de C-glicosídeos 2,3-insaturados é 
através da reação de glicosilação, ou rearranjo 
de C-Ferrier, como é comumente conhecido, e 
a mesma consiste na substituição nucleofílica 
acompanhada de um rearranjo alílico, sob a 
influência de um catalisador,85,116 onde a ação 
catalítica do ácido de Lewis (AL) promove a 
formação de um íon oxônio o qual 
posteriormente sofre um ataque nucleofílico 
de C, O, N e S nucleófilos no carbono 
anomérico (Esquema 5). 

Essa aproximação do nucleófilo pode 
ocorrer por duas faces diferentes levando a 
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formação dos anômeros alfa e beta (Esquema 
6). 

 

 

Esquema 5. Mecanismo geral do Rearranjo de C-Ferrier 

 

 

Esquema 6. Formação dos α e β-anômeros no Rearranjo de C-Ferrier 

 

Um fato que deve ser levado em 
consideração nesta reação é a estabilidade 
relativamente alta do cátion formado, obtida 
através da participação de ressonância dos 
pares de elétrons livres do átomo de oxigênio 
endocíclico.117,118 

Uma vez que no Rearranjo de C-Ferrier 
ocorre a formação de um cátion oxônio, este 
posteriormente reage com diferentes tipos de 
nucleófilos de carbono. Na síntese de C-
glicosídeos 2,3-insaturados, diferentes tipos 
de nucleófilos de carbono - incluindo 
reagentes de alilsilanos, alilo, alquilo, arilo e 
alcinilmetal, TMSCN, isonitrilos, enol 
derivados e aromáticos - são capazes de reagir 
com o intermediário íon oxônio, diante de 
uma diversidade de promotores que já foram 

descritos na literatura.119O aliltrimetilsilano 
tem sido tradicionalmente um nucleófilo de 
escolha para testar a utilidade de promotores 
em rearranjo de Ferrier para fornecer C-
glicosídeos não saturados. Desde a última 
revisão de Ferrier,119-121 vários catalisadores 
ácidos foram relatados para induzir essa. 

O uso de catalisadores, tais como,  LiBF4,122 
InBr3,

123 iodo,124 InCl3 em condições de 
irradiação de micro-ondas,125,126 In(OTf)3,127 

Bi(OTf)3,128 ZrCl4,129 HClO4 / SiO2,130 Er(OTf)3,131 
MoCl5,132 Yb(OTf)3 em líquidos iônicos,133 PMA 
suportados em sílica gel,25La(NO3)3·6H2O,135 
AuCl3, e zeólita H-USY CBV-720,136 conduziu a 
bons rendimentos de derivados alil C-glicosil 
66 e excelente seletividade em relação ao α na 
maioria dos casos (Esquema 7). 

 

 

Esquema 7. Síntese C-glicosídeos 2,3-insaturados com usando diferentes catalisadores 
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De um modo geral, observou-se uma 
melhor seletividade do anômero α para os 
derivados D-galactais, com exceção do 
HClO4/SiO2, em que a relação α/β foi de 10:1, 
uma vez que com a seletividade do D-glical foi 
de 20:1. Estes reagentes também foram 
eficientes na reação de glicais com outros 
nucleófilos de sililo, incluindo cianeto de 
trimetilsilil. 

Lubin-Germain et al.,137,138 relataram a 
eficiente alquinilação do rearranjo de Ferrier, 
mediada por In0, de glicais substituídos com 

grupo acil e benzil com uma variedade de 
iodoalcanos sob condições de Barbier 
fornecendo os compostos finais com 
rendimentos de moderados a bons e alta 
estereoseletividades α/β (Esquema 7, A e C). 
O uso de alquiniltrifluoroboratos de potássio 
como nucleófilos na presença de BF3·Et2O na 
alquinilação de tipo Ferrier de tri-O-acetil-D-
glical foi relatado por Vieira e colaboradores 
(Esquema 8, B e D).139,140 Ainda segundo os 
autores, os alenilsilanos são uma classe 
importante de nucleófilos de carbono na 
produção de alquinas funcionalizadas.140 

 

 

Esquema 8. Reações de Alquinilação do tri-O-acetil-D-glical (49) 

 

Brawn e Panek relataram que os 
alenilsilanos reagiram com tri-O-acetil-D-glical 
(49) ou tri-O-acetil-D-galactal (69) em 
presença de TMSOTf para fornecer a α-C-
glicosilação com alta estereoseletividade (> 
20:1) e rendimentos variando de moderados a 
bons.141 

A síntese de C-glicosídeos 2,3-insaturados 
foi realizada reagindo alenilsilanos 
enantiomericamente enriquecido com tri-O-
acetil-D-galactal (69), em presença do TMSOTf 
para fornecer os compostos 71 e 73 como uma 
mistura de diastereoisômeros, onde a 
aglicona contém com um com estereocentros 
adjacentes (Esquema 9).85,142 

 

Esquema 9. Síntese estereoseletiva de tri-O-acetil-D-galactal (69) alenilsilanos 
enantiomericamente enriquecido 70 e 72 
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Uma abordagem para a síntese de C-
dissacarídeos a partir dos derivados de 3-O-
acetil-D-glical e 3-O-acetil-D-galactal (74), 
respectivamente, foi descrita por Gemmell e 
Osborns (Esquema 10).143 As reações foram 
mediadas usando o catalisador BF3·Et2O ou 
iodo. Segundos os autores, outros reagentes, 
tais como, SnCl4, SnBr4, TMSOTf e InCl3 

levaram a uma complexa mistura de produtos. 
As reações de formação de ligação C-C 
ocorreram com excelente estereoseletividade 
para produzir β-C-glicosídeos 2,3-insaturados 
76, (Esquema 10). A remoção do acetal 4,6-O-
benzilideno em uma reação on pot e a 
posterior redução in situ do acetal anomérico 
forneceu o dissacarídeo 76. 

 

 

Esquema 10. Síntese de C-dissacarídeos através de rearranjo de C-Ferrier de olefinas terminais 

 

Yadav e colaboradores, ao reagir 
isocianetos com tri-O-acetil-D-glical em 
presença pelo FeCl3 usando como solvente o 
CH2Cl2 promoveram rearranjos de C-Ferrier 
para fornecer C-glicosídeos 78 (Esquema 
11).144 Várias isonitrilas foram então 
glicosiladas usando derivados D-glicais 

acilados e alquilados para proporcionar a 
formação de C-glicosilamidas insaturadas 
correspondentes em rendimentos excelentes. 
Os autores também observaram melhores 
seletividades α/β (9:1) quando os glicais 
acilados foram utilizados com grupos 
doadores. 

 

 

Esquema 11. Síntese de C-glicosídeo amida através de rearranjo de Ferrier de isocianetos 

 

Yadav et al., também estudaram as 
reações entre vários compostos 
heteroaromáticos e tri-O-acetil-D-glical 
usando o catalisador InCl3.145 Os derivados 
heteroaromáticos estudados foram o furano, 

o pirrol, o indol e o tiofeno. As reações entre 
tri-O-acetil-D-glical ou tri-O-benzil-D-glical (49 
e 79, respectivamente) e furano ou pirrol 
produziram regioseletivamente os adutos C-
80, 82 e 83 (Esquema12). 
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Esquema 12. Reação de tri-O-acetil-D-glical ou tri-O-benzil-D-glical com o furano e pirrol 

 

No esquema 13, Gallagher et al., 
demonstram o uso de reagentes organozinco 
em rearranjos de C-Ferrier.146 Segundo os 
autores uma variedade de C-glicosídeos foram 
obtidos sem complicações a partir do 
tratamento dos glicais 84 e 85 com derivados 
de organozinco em presença de BF3·Et2O para 
fornecer os C-glicosídeos 2,3-insaturados 86 
(Esquema 13, A). Xue et al., relataram a 
obtenção do composto 87 a partir do tri-O-
acetil-D-glical 49 e composto dialquilo ou 
diarilazina em presença do CF3COOH, onde os 
produtos foram obtidos em bons 
rendimentos, com moderadas e alta 
estereoseletividades em favor do anômero α 

(Esquema 13, B).147 Em 2002, Du Bois et al.; 
relataram as reações entre ArZnCl (ArLi, ZnCl2)  
e glical 88 em presença de Et2O para produzir 
uma variedade C-glicosídeos 2,3-
insaturados.148 As espécies de ArZnCl (ArLi, 
ZnCl2), reagiram com glicals em Et2O como 
solvente para fornecer C-glicosídeos 2,3-
insaturados funcionalizados em rendimentos 
moderados a bons e com seletividade α/β> 
10/1 (Esquema 13, C). Por outro lado, as 
reações entre as espécies de alquilzinco 
[alquil-CH2-I, Zn(Cu), ZnCl2] e o glical 90 
forneceu o composto 91 em rendimento de 
72% e com seletividade α/β> 10/1 (Esquema 
13, D). 
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Esquema 13. Uso de reagentes der Organozinco como nucleófilo em rearranjo de Ferrier para 
obtenção de C-glicosídeos 

 

Kobayashi et al.;149 descreveram o uso de 
compostos organoboro como nucleófilos e 
Índio(I) como catalisador. A reação consistiu 
em reagir o tri-O-acetil-D-glical 49 e 
organoboro 92 na presença de InOTf em 
CH2Cl2 à temperatura ambiente para fornecer 
o C-glicosídeo 2,3-insaturado 93 em 
rendimento de 60% e com seletividade α/β> 
10/1. Por outro lado, reações semelhantes 

entre tri-O-acetil-D-glical 49 e alilborano 94 ou 
alenil boronato 95 também forneceram os 
correspondentes o C-glicosídeos 2,3-
insaturado 93 e 94, respectivamente 
(Esquema 14, B e C). A reação do tri-O-benzil-
D-glical 79 exigiu a presença adicional de um 
co-catalisador para fornecer o C-glicosídeo 
2,3-insaturado 98 em rendimento de 44% e 
com seletividade α/β> 9/1. 

 



 
 Lima, J. A. C. L. et al. 

  
 

917 Rev. Virtual Quim. |Vol 10|  |No. 4|  |900-939| 

 

 

Esquema 14. Uso de organoboro como nucleófilos e Índio (I) como catalisador em rearranjo de 
Ferrier 

 

Uma reação de propargilação, onde o 
aleniltributilestanho (IV) funcionou como 
nucleófilo na presença de BF3·OEt2 (Esquema 
15) foi relatada por Kim et al.150 Esta reação 
ocorreu entre o tri-O-acetil-D-glical 49 e 
aleniltributilestanho (IV) para fornecer o C-
glicosídeo 2,3-insaturado 96 em excelente 

rendimento de 99% e com seletividade α/β 
2:1. Os autores atribuíram as 
estereosseletividades observadas às 
preferências conformacionais dos glicais, bem 
como ao controle estérico nos glicais bicíclicos 
iniciais. 

 

 

Esquema 15. Reação entre o tri-O-acetil-D-glical 49 e aleniltributilestanho (IV) para fornecer o 
C-glicosídeo 2,3-insaturado 

 

Em 2011, Bai et al.; relataram a C-
glicosilação do tri-O-acetil-D-glical e tri-O-

acetil-D-galactal utilizando como nucleófilo o 
triflatos de enol catalisada com paládio.16 Os 
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autores verificaram que apenas os glicals com 
bons grupos de saída, tais como acetil ou 
etoxicarbonil (Tabela 1), forneceram C-
glicosídeos 2,3-insaturados em bons 
rendimentos nas condições padrão 
([PdCl2(PPh3)2], Et3N, nBu4NCl em DMF a 20 
°C). Os derivados D-glical ou D-galactal 

forneceram rendimentos semelhantes ao C-
glicosídeos 2,3-insaturados (Tabela 1; 
entradas 3 e 4) e a substituição de grupo 
metila ou o aumento do tamanho do anel no 
triflato de enol cíclico levou a rendimentos 
reduzidos de C-glicosídeos 2,3-insaturados 
(Tabela 1, Entradas 5-6). 

 

Tabela 1. C-glicosidação do tri-O-acetil-D-glical e tri-O-acetil-D-galactal e como nucleófilo o 
triflatos de enol catalisada com paládio 

 

Entrada Enol Triflato Produtos Rendimentos (%) 

1 

 

 

 

80 

2 

 

 

 

25 

3 

 

 

 

78 

4 

 

 

 

84 

 

5  

 

 

54 

 

6  

 

 

31 

 

Em 2006, Yadav et al.151 relataram o uso de 
vários ácidos de Lewis para reações obtenção 
de C-glicosídeos 2,3-insaturados, através do 
rearranjo de C-Ferrier do glical 77 com 
aliltrimetilsilano como o nucleófilo e 
quantidades catalíticas de ácido 

fosfomolíbdico (PMA) suportado em sílica gel 
(PMA-SiO2). Os compostos finais foram 
obtidos com rendimentos variando entre 85-
95% e alta seletividade anomérica em favor do 
anômero α (Esquema 16). 
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Esquema 16. Síntese de C-glicosídeos 2,3-insaturados usando quantidades catalíticas de ácido 
fosfomolíbdico (PMA) suportado em sílica gel (PMA-SiO2) 

 

Misra e colaboradores152 relataram o uso 
do catalisador HClO4-SiO2 para promover o 
rearranjo de C-Ferrier em glicais. Os autores 
verificaram que 50 mg do catalisador 
suportado em silica era eficaz para 1 mmol do 

glical, gerando rapidamente os produtos 
desejados com rendimentos de 75-85% e 

excelente seletividade α/β 10:1, como 
mostrado no Esquema 17. 

 

 

Esquema 17. Sínteses de C-glicosídeos 2,3-insaturados usando HClO4–SiO2 como catalisador 

 

Lin et al.,153 relataram a síntese de exo e endo-
glicais com alilmetilsilano na presença de 10 
equivalentes de ácido trifluoroacético (TFA) 
produzindo os produtos desejados em 

rendimento em torno de 85% e alta 
seletividade em favor α-anômero 98 
(Esquema 18). 

 

 

Esquema 18. Síntese de exo e endo-glicais com alilmetilsilano em presença de TFA 

 

O uso de zeólita foi relatado por Gammon 
et al.,154 para catalisar a reação de alilação do 
tri-O-acetil-D-glical 49 para produzir o 

glicosídeo 2,3-insaturado 93 em rendimento 
de 70% e com seletividade α/β de 2:1 
(Esquema 19). 

 

 



Lima, J. A. C. L. et al. 
 

 

Rev. Virtual Quim. |Vol 10|  |No. 4|  |900-939| 920 

 

 

Esquema 19. Síntese do C-glicosídeo 2,3-insaturadousando como catalisador zeólita 

 

Lubin-Germain et al.,92 relataram a síntese 
de pseudoglicosídeos 2,3-insaturados 
catalisados pelo metal índio(0). Segundo os 
autores, a presença da funcionalidade de 
iodeto nos alquinos foi essencial para a 
ocorrência do rearranjo de C-Ferrier. Eles 

observaram que o metal índio era um 
catalisador melhor que outros metais, tais 
como, o zinco, o manganês ou seus sais, na 
formação de produtos com melhores 
rendimentos e seletividade do α-anômero na 
proporção de α/β de 9:1 (Esquema 20). 

 

 

Esquema 20. Síntese do C-glicosídeo 2,3-insaturadousando como catalisador o metal Índio 

 

O protocolo acima mencionado foi 
empregado pelos mesmos autores usando o 
iodeto de alquinilo derivado de aldeído de 
Garner, mas não conseguiu fornecer o 
pseudoglical desejado (Esquema 21).92 Nesta 
síntese obteve-se um alceno bicíclico 107, cuja 
formação foi sugerida por indução do Índio 
mediada por carbamato, seguida da 
ciclização. Ao proteger com O-difenilamida, 
obtiveram-se o produto 109 em bom 
rendimento (83%). 

Marcaurelle et al.,155 investigaram a reação 
do tri-O-acetil-D-glical 49 com o acetal 110 sob 
diferentes condições, onde o melhor 
resultado foi obtido quando a reação foi 
realizada na presença do catalisador TMSOTf 
em diclorometano, produzindo uma mistura 
na proporção de 1:1,5 de 111, e rendimento 
de 73% em favor do β-anômero (Esquema 22). 
No entanto, ao substituir o solvente para 
CH3CN, os autores observaram que a 
proporção isomérica foi invertida (α:β = 1,5: 1) 
e o rendimento de 111 foi 65%. 
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Esquema 21. Síntese do C-glicosídeo 2,3-insaturado 70 usando como catalisador o metal Índio 
e o grupo protetor O-difenilamida 

 

 

Esquema 22. Reação do tri-O-acetil-D-glucal 49 com o acetal 110 sob diferentes condições 

 

Yadav et al.,156 relataram o rearranjo de C-
Ferrier quando reagiram o tri-O-acetil-D-glical 
49 com isocianetos como nucleófilos em 
presença de quantidade catalítica de FeCl3 à 
temperatura ambiente, para fornecer o C-
glicosídeos tendo como aglicona um grupo a 

amida 113 em bons rendimentos e elevada 
estereoseletividade (Esquema 23). Por outro 
lado, vários glicais protegidos reagiram 
eficientemente com os isonitrilos na presença 
de apenas 10% mol% de FeCl3 à temperatura 
ambiente. 

 

 

Esquema 23. Reação do tri-O-acetil-D-glical 49 com isocianetos como nucleófilos em presença 
de quantidade catalítica de FeCl3 
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Em 2010, Brawn e Panek,157 utilizaram o 
alenilsilano enantiomericamente enriquecido 
114 para obtenção de C-glicosídeo 2,3-
insaturados sob a influência do TMSOTf como 

catalisador. Os produtos 116 e 118 foram 
obtidos com boa diastereosseletividade, 
favorecendo o anômero α (Esquema 24). 

 

 

Esquema 24. Obtenção de C-glicosídeo 2,3-insaturados sob a influência do TMSOTf como 
catalisador 

 

Os alquiniltrifluoroboratos de potássio 
reagiram com o tri-O-acetil-D-glical 49, 
usando como catalisador o BF3·OEt2,91 para 
fornecer C-glicosídeos 2,3-insaturados. Sabe-
se que os alquiniltrifluoroboratos de potássio 
são sais estáveis em presença de ar e de 
umidade. Segundo os autores, a reação foi 
realizada sob duas condições: na primeira 
condição foi utilizado 4 equivalentes de 

BF3·OEt2 a -45 oC usando a acetonitrila como 
solvente para produzir os compostos 119 e 
120 em 20 min; na segunda condição foi 2 
equivalentes de BF3·OEt2 a 0 oC usando a 
acetonitrila como solvente para produzir os 
compostos 119 e 120 em 10 minutos 
(Esquema 25). Em ambos as condições os 
rendimentos foram bons e os compostos 
foram obtidos com alta seletividade. 

 

 

Esquema 25. Reação dos alquiniltrifluoroboratos de potássio com tri-O-acetil-D-glical 49 em 
presença de BF3·OEt2 

 

A proposta mecanística para conversão do 
trifluoroborato 121 no difluoreto 122 foi 
realizada com BF3·Et2O. Em seguida, 
organoboro 122 ativa o grupo acetato do C-3 
do tri-O-acetil-D-glical 49, gerando um [R-
B(OAc)F2]-, tipo de nucleófílo, que ataca o íon 

oxônio em C-1, fornecendo os glicosídeos 2,3-
insaturados 119 e 120 (Esquema 26). 

Outros proposta para síntese de C-
glicosídeos 2,3-insaturados são descritos na 
literatura.158-161 
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Esquema 26. Proposta mecanística para reação dos alquiniltrifluoroboratos de potássio com 
tri-O-acetil-D-glical 49 usando BF3·OEt2 

 

3.3. Reação de Acoplamento 

 

Outro tipo de reação para obtenção de C-
glicosídeos 2,3-insaturados é a reação de 
acoplamento. Nos últimos anos, os metais de 
transição em especial o paládio tem sido 
bastante empregados na química dos 
carboidratos. Os metais de transição atuam 
como catalisadores promovendo a ativação 
do (C-3) de derivados de glicais 
funcionalizados. Tais métodos dependendo da 
natureza do sistema ligante/catalisador 
requerem baixas quantidades do catalisador 

para controlar a seletividade α e β.162 De uma 
forma geral a reação de acoplamento de Heck 
consiste na reação de glicais contendo uma 
porção vinílica em presença de catalisador de 
paládio levando aos respectivos C-glicosídeos 
2,3-insaturados.163,164 

Posteriormente outras estratégias 
incluindo reações de acoplamento foram 
relatadas, dentre estas podemos citar como 
exemplo as reações do tipo: Suzuki, Stille e 
Negishi, onde as mesmas partem de glicais 
como material de partida (Esquema 27).164-166 

 

 

Figura 10. Esquema geral referente às reações de acoplamento 

 



Lima, J. A. C. L. et al. 
 

 

Rev. Virtual Quim. |Vol 10|  |No. 4|  |900-939| 924 

 

Na reação de Susuki, utiliza-se como 
precursores os ácidos borônicos que são 
considerados bons agentes de acoplamentos 
devido a sua estabilidade à umidade e sua 
disponibilidade comercial. Para a síntese de C-
glicosídeos inclui o acoplamento cruzado 
Suzuki, que envolve a reação entre ácidos 
aril/vinil-borônicos ou organoboranos e 
halogenetos arila/vinilo ou triflatos 
catalisados por complexos de paládio.167-173 

Os glicais halogenados ou os estanil-glicais 
atuam como substratos potenciais no 
acoplamento de Stille com organoestanho ou 
organohaletos para fornecer C-glicosídeos.174-

180 Por outro lado, C-glicosídeos também pode 
ser sintetizado pela reação de acoplamento de 
Negishi de um composto de organozinco ou 
um halogeneto orgânico, catalisado por 
complexos de níquel ou paládio.181-183 

 

4. Reações com C-Glicosídeos 2,3-
Insaturados 

 

Nos parágrafos posteriores nos determos a 
descrever algumas reações envolvendo C-
glicosídeos 2,3-insaturados, tais como, reação 

de epoxidação, de hidrioxilação, e 
substituição nucleofílica e rearranjos [3,3]-
sigmatrópicos. 

 

4.1. Reação de epoxidação 

 

Fakha e Sinou em 2005,184 relataram a 
epoxidação do pseudo-glical bis-sililado 129a 
com configuração α e rendimento de 79% com 
estereoseletividade de 11:89 dos α-alo e α-
mano-epóxidos 130a e 131a, 
respectivamente, os quais foram separados 
por cromatografia em coluna. Por outro lado, 
o pseudo-glical 129b protegido forneceu 
apenas o isômero 130b de α-alo em baixo 
rendimento, ou seja 20% (Esquema 27). 

Contudo, segundo os autores, a 
epoxidação do pseudo-glical monosililado 132 
(Esquema 28) fornecendo uma seletividade 
reversa ao observado para o composto bis-
sililado 129a; uma mistura de 86:14 dos α-alo 
e α-mano-epóxidos133 e 134 obtidos com um 
rendimento de 70%, sendo o α-alo-epóxido 
predominante. Estes resultados foram 
bastante diferentes dos observados na 
epoxidação de alquil 2,3-didesoxi-hex-2-
piranosídeos.184 

 

 

Esquema 27. Epoxidação do pseudo-glical bis-sililado 

 

 

Esquema 28. Epoxidação pseudo-glical monosililado 132 
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4.2. Reação de hidroxilação 

 

A cis-hidroxilação foi examinada utilizando 
tetróxido de ósmio e óxido de N-
metilmorfolina como o oxidante. Os pseudo-
glicais bis-hidroxilados 129a e 129b 
produziram exclusivamente os α-D-fenil-
manopiranosideo 135 em 70% rendimento, 

respectivamente (Esquema 29). Os autores 
também realizaram bis-hidroxilados 129a e 
129b seguida da acetilação do composto 136 
com um rendimento de 43%. Esta 
estereoselectividade elevada pode ser 
explicada, como para alquil-2,3-didesoxi-α-D-
hex-enopiranosídeos, pela aproximação do 
reagente na face menos impedida no C-
glicosídeos 2,3-insaturados.185,186 

 

 

Reagentes: i) OsO4, NMO, H2O/acetona, 70%; ii) OsO4, NMO, H2O/acetona, Ac2O, piridina, 43% 
rendimento 

Esquema 29. Cis-hidroxilação de C-glicosídeos 2,3-insaturados os α-D-fenil-manopiranosideos 
135 e 136 

 

Na aplicação do processo de hidroxilação 
cis aos anéis β137a e 137b foram fornecidos 
uma mistura de C-fenil β-mano e alo-
piranosídeos (Esquema 30). O composto 137a 
bis-O-sililado proporcionou 70% de 
rendimento de uma proporção de isomérica 
de 80:20 de β-mano-piranosídeo 138 e β-alo 
piranosídeo139, que não foi  ser separado, 
enquanto os 137b desprotegidos foram 

obtidos em rendimento de 75% após a 
acetilação e uma proporção isomérica de 
25:75 de β-mano-piranosídeo140e β-alo-
piranosídeo141, os quais foram separados. 
Esta diferença na estereoselectividade pode 
ser explicada pela presença do grupo 
Me2ButSiO em137a versus o grupo OH em 
137b. Outras reações de hidroxilação são 
descritas na literatura.187 

 

 

Esquema 30. Mistura de C-fenil β-mano e allo-piranosídeos 
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4.3. Substituição nucleofílica de C-
glicosídeos 2,3-insaturados 

 

Este tipo de reação foi aplicada na adição 
de fenóis,188 nucleófilos heterocíclicos, 
incluindo derivados de uracila,189 e / ou 

azidas.190,191 A substituição nucleofílica 
realizada em alquil-α-D-eritro-hex-2-
enopiranosídeo 142, ocorreu com uma alta 
régio- e estereoseletividade, levando a 
formação dos derivados substituídos em C-4 
144 (Esquema 31). 

 

 

Esquema 31. Reação de substituição nucleofílica a C-glicosídeos 2,3-insaturados 

 

4.4. Rearranjos [3,3]-sigmatrópicos de C-
glicosídeos 2,3-insaturados 

 

Kriek et al.;192 utilizaram os rearranjos 
[3,3]-sigmatrópico de Overman para 
incorporar funções aminas na posição C-2 de 
um C-glicosídeos 2,3-insaturados (Esquema 

32). Assim, o tricloroacetimidato de alila 154, 
facilmente obtido a partir de alil C-glicosídeo 
153, permitiu a incorporação eficiente de uma 
amina secundária em C-2 de 153 para fornecer 
o composto 155. A reação foi realizada sob 
refluxo de 1,2-diclorobenzeno na presença de 
K2CO3. 
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Esquema 32. Rearranjos [3,3]-sigmatrópico de Overman de Glicosídeos 2,3-insaturados 

 

Uma vez obtido os α-C-glicosídeos 2,3-
insaturados de forma eficiente, Ansari et 
al.;193exploraram a síntese do 2-desoxi-2-
amino-α-C-glicosideo164(Esquema 33). Sabe-
se que os 2-desoxi-2-amino-α-C-glicosídeos 
receberam atenção considerável nos últimos 
anos devido ao seu uso na síntese de 

glicopeptídeos,194 glicolípidos195 e glicosil 
aminoácidos.196Entre os vários métodos 
relatados para preparar esses compostos,197o 
método mais comum é através da C-
glicosilação de 2-aminoaçúcares,198 o que é 
desafiador devido à incompatibilidade de 
ácidos próticos ou de Lewis. 

 

 

Esquema 33. Síntese de 2-deoxi-2-amino-C-glicosideo obtido a partir de C-glicosídeos 2,3-
insaturados 
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Finalizando, outros trabalhos sobre a 
síntese e aplicações de C-glicosídeos são 
citados em uma revisão publicada em 2017.199 
Portanto, existe a necessidade de desenvolver 
métodos eficientes para facilitar o acesso a 
esta importante classe de compostos. 

 

5. Considerações Finais 

 

Sabe-se, que o campo da química do C-
glicosídeos recebeu cada vez mais atenção nas 
últimas décadas. Atualmente, existem 
abordagens sintéticas diferentes para a 
síntese de C-glicosídeos 2,3-insaturados. Um 
excedente de catalisadores e promotores são 
disponíveis para síntese de C-glicosídeos 2,3-
insaturados. Por outro lado, os C-hex-2,3-
enopiranosídeos continuam sendo 
intermediários importantes, atualmente 
utilizados em uma variedade de 
transformações sintéticas.  

Algumas implicações quimio-, regio- e 
estereoseletivo que contribuem para a reação 
de C-Ferrier, tais como, efeitos estéricos, 
assistência anquimérica, tipos de nucléofilos 
dentre outros, também foram descrito. 

Os C-glicosídeos 2,3-insaturados sofrem 
reações de adição a dupla ligação no C2-C3, 
tais como, cis-hidroxilação, epoxidação, 
substituição nucleofílica de C-glicosídeos 2,3-
insaturados e rearranjos [3,3]-sigmatrópicos 
de C-glicosídeos 2,3-insaturados. 

Os desenvolvimentos recentes na síntese 
C-glicosídeos 2,3-insaturados incluem a 
descoberta de reagentes e reações mais 
eficientes, como rearranjos de C-Ferrier, 
reações de acoplamento mediado por metal 
de transição, dentre outras. Os refinamentos 
destes tipos de reações expandiram 
significativamente aos longos dos anos, e com 
isso C-glicosídeos 2,3-insaturados foram 
sintetizados com melhores rendimentos e alta 
estereosseletividades. 

A regiosseletividade do rearranjo C-Ferrier 
segue os princípios da teoria dos ácidos e 

bases duros e moles. Assim, nucleófilos duros 
são direcionados ao C-1 e formam, assim, C-
glicosídeos 2,3-insaturados.  

Além disso, várias abordagens assimétricas 
também surgiram. Portanto, a síntese de C-
glicosídeo 2,3-insaturado é uma tarefa 
complicada pelo alto grau de funcionalidade 
quiral em carboidratos. A presença de 
múltiplos grupos de proteção também resulta 
em severo impedimento estérico nestas 
moléculas. Apesar da complexidade associada 
à sua síntese, o significado biológico e 
farmacológico de C-glicosídeos 2,3-
insaturados continua a prometer um 
crescimento substancial de novos métodos 
nesta área. 
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