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Abstract

Resumo: A doença de Chagas é uma infeção causada pelo protozoário parasita Trypanosoma cruzi e afeta 
cerca de 8 milhões de pessoas em 21 países da América Latina. O tratamento dessa doença ainda se baseia no 
uso de benzonidazol ou nifurtimox, que apresentam baixas taxas de cura na fase crônica e frequentemente 
apresentam muitos efeitos colaterais indesejáveis. Aqui, descrevemos a síntese de flavonas e a avaliação 
de sua atividade tripanocida. As flavonas foram testadas in vitro contra o T. cruzi e dentre os 13 compostos 
testados, 6 destes demonstraram alguma atividade tripanocida modesta in vitro. Observaram-se melhorias 
na atividade anti T. cruzi para flavonas portadoras de substituintes nitro ou metóxi. Notavelmente, foram 
mantidas citotoxicidades muito baixas com grupos metoxila, o que sugere que esse grupo funcional 
favorece compostos tripanocidas mais seletivos. Além disso, a modificação estrutural na posição 3 do anel 
diidropirona forneceu a flavona mais ativa, o que sugere que a introdução de diferentes funcionalidades 
nessa posição poderia gerar novos compostos promissores com propriedades tripanocidas.

Chagas disease is caused by infection of the parasite protozoan Trypanosoma cruzi and affects about 
8 million people in 21 countries in Latin America. Treatment of this disease is still based on the use of 
benznidazole or nifurtimox, which both present low cure rates in the chronic phase and often have many 
undesirable side effects. Herein, we describe the synthesis of flavones and evaluation of their trypanocidal 
activity. The flavones were tested to in vitro against T. cruzi and amongst the 13 compounds tested, 6 
of these demonstrated some modest trypanocidal activity in vitro. Enhancements in anti T. cruzi activity 
were noted for flavones bearing either nitro or methoxy substituents. Moreover, very low cytotoxicities 
were maintained for flavones with methoxy groups which suggests that this functional group favors more 
selective trypanocidal compounds. Finally, structural modification at position 3 of the dihydropyrone ring 
provided the most active flavone, which suggests that the introduction of different functionalities at this 
position could yield promising new compounds with trypanocidal properties. 
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1. Introduction

Neglected Tropical Diseases affect people living 
on low incomes in mainly developing countries, 
causing economic and health problems in many 
communities. Chagas disease, also called American 
trypanossomiasis, is an infectious disease caused 
by the protozoan parasite Trypanosoma cruzi 
(T. cruzi), through direct contact with contaminated 
feces of triatomine bugs.1,2 Approximately 6 
to 7 million people are infected with Chagas 
disease worldwide, mostly in Latin America.3,4,5 
Currently, only two medicines are employed 
for the treatment of Chagas disease: nifurtimox 
(NFX) or benznidazole (BZ), both of which cause 
undesirable side effects and present low cure 
rates in the chronic phase of disease.6, 7 Given 
the negative economic and social impact caused 
by Chagas disease, the search for new drugs 

has become increasingly necessary to treat this 
disease. Flavones isolated from plants have been 
isolated and tested for their anti T. cruzi activity. For 
example, flavone and 7-methoxyflavone isolated 
from the leaves of Conchocarphus heterophyllus8 

and flavone-C-diglycoside isoswertisin-α-L-
rhamnoside isolated from the leaves of Peperomia 
obtusifolia (Piperaceae)9 were assayed against T. 
cruzi  and all displayed weak trypanocidal activity. 
In comparison, the flavone-C-glycoside, isoorientin 
isolated from Turkish Ajuga laxmannii (Lamiaceae) 
was significantly more potent against T. cruzi in 
vitro (Figure 1).10

Generally, flavones exhibit very low toxicity 
and moderate trypanocidal activity, becoming an 
interesting template for designing more potent 
and selective derivatives. In this regard, we have 
prepared and tested synthetic flavones against T. 
cruzi, evaluated their cytotoxic effect against L929 
cells and determined the selectivity index.
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2. Results and Discussion

The method of choice for the synthesis of a 
range of structurally diverse flavones is based on a 
straightforward procedure described by Wheeler 
in 1952 and  involves the dehydrative cyclization 
of certain 1,3-diaryl diketones.11 The synthesis of 
the target flavones began with the esterification 
of 2-hydroxyacetophenones with substituted 
benzoyl chlorides to provide the corresponding 
esters 1 (Scheme 1). The esters undergo a Baker-
Venkataraman rearrangement in the presence of 
KOH to afford 1,3-diketones 2. The 1,3-diaryl-1,3-
propanediones 2 have proven to be versatile building 
blocks for the synthesis of trypanocidal diazepines,12 
isoxazoles13 and flavanones.14 Compounds 2 when 
isolated by precipitation and filtration, were 
immediately subjected to a condensation reaction 
under refluxing acetic acid to provide flavones 3a-k 
(Scheme 1). 

All data for flavones 3a-k were in complete 
accordance with literature values (see experimental 
section).

When employing 2-hydroxyacetophenone 
and isophthaloyl chloride in the aforementioned 
synthetic route, the “diflavone” 3l (Scheme 2) was 
prepared following a slightly modified procedure 
described previously by our group.15

Finally, in order to assess how the removal of the 
olefinic hydrogen would impact the trypanocidal 
activity, flavone 3d was brominated at the position 3 
of the dihydropyrone ring to afford the corresponding 
flavone 3m in good yield  (Scheme 3).

Thus, with the target compounds in hand, 
in vitro bioassays using trypomastigote and 
amastigote forms of Tulahuen strain T. cruzi were 
carried out. Once the final products were purified 
and fully characterized, we carried out in vitro 
bioassays against trypomastigote and intracellular 
amastigote of β-galactosidase transfected 
Tulahuen strain of T. cruzi. We have opted for an in 
vitro methodology that simultaneously evaluates 
trypomastigote forms that are initially present in 
the blood after entering through the bite wound 
and intracellular amastigotes forms present in 
the vertebrate host during the acute and chronic 
phases of the disease.16 This approach is in 
accordance with the guidelines proposed by the 
Fiocruz Program for Research and Technological 
Development on Chagas Disease and the Drugs 
for Neglected Diseases Initiative (DNDi).17 
Benznidazole was used as a positive control 
against T. cruzi and cytotoxicity was determined in 
mammalian L929 cells (Table 1). 

Amongst the 13 compounds tested, only six 
of these presented measurable trypanocidal 
activity and none of the flavone derivatives were 

Figure 1. Trypanocidal Flavones
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Scheme 1. Synthetic route for the preparation of flavones: i) pyridine, rt, 1 h; ii) pyridine, KOH, 50ºC, 1 
h; iii) AcOH, H2SO4, reflux, 1 h

Scheme 2. Synthesis of Flavone 3l

Scheme 3. Synthesis of Flavone 3m
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Table 1. In vitro trypanocidal activity, cytotoxicity and selectivity index of bioactive flavones

Compd No. Flavone Trypanocide IC50(μM) Cytotoxicity CC50(μM) SI Log P TPSA (Å2)

3a

 

Inactive >300 - 3.74 30.21

3b

 

Inactive >300 - 4.19 30.21

3c

 

383.7 >300 - 3.79 39.45

3d

 

Inactive >300 - 4.42 30.21

3e

 

211.8 >300 - 3.37 57.91

3f

 

Inactive >300 - 2.88 43.35

3g

 

97.2 122.5 1.3 3.67 76.03

3h

 

Inactive >300 - 3.90 30.21

3i

 

312.4 >300 - 5.05 39.45

3j

 

Inactive >300 - 5.07 30.21

3k

 

356.1 >300 - 4.82 39.45

3l
 

Inactive >300 - 5.51 60.42

3m

 

39.0 60.0 1.5 5.15 30.21

Benz

 

3.8 2381 625 - -
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more active than reference drug benznidazole.  
As expected, almost all of the flavones presented 
very low cytotoxicity and their cytotoxicity could 
not be quantified. Initially, compound 3a was 
evaluated for trypanocidal activity and this result 
used for comparison in order to assess Structure 
Activity Relationships (SAR). Although the anti T. 
cruzi activity for flavone 3a had been reported 
to be 9531 µM,8 the present in vitro assay was 
not capable of determining the IC50 for such a 
weakly active compound. The same was also true 
for flavones 3b, 3d, 3f, 3h, 3j and 3l. From these 
results, we can conclude that the introduction 
of a methyl group and halogens on the pendant 
benzenoid ring or substitution of this moiety 
for a furan were not conducive to increasing 
trypanocidal activity.  In contrast, the inclusion of 
methoxy substituents did allow for measurable 
trypanocidal activities to be uncovered.  
Furthermore, flavones 3c, 3e, 3i and 3k were 
essentially non-toxic which suggests that the 
methoxy group favors more selective trypanocidal 
compounds. The improvements in anti T. cruzi 
activity provided by methoxy substituents has 
been highlighted in studies on flavanones and 
chalcones.14, 18 Furthermore, in the case of tricyclic 
coumarins, a 7 fold increase anti T. cruzi activity 
was observed with the introduction of methoxy 
substituents.19 Although flavone 3g bearing a nitro 
group was significantly the most active flavone, 
unfortunately the cytotoxicity and poor selectivity 
index render flavone 3g an undesirable candidate 
for further in vivo studies. Finally, a remarkable 
improvement in trypanocidal activity was noted 
for brominated flavone 3m suggesting that 
modifications at position 3 of the dihydropyrone 
ring greatly enhances the trypanocidal properties 
of flavones. Once again, the cytotoxicity was 
unfavorable for further investigation in vivo; 
nevertheless, these preliminary results suggest 
that the modification at this position with other 
functionalities could yield active and selective 
trypanocidal compounds. 

The potential of compounds 3a-m as candidates 
for new drugs was also evaluated by using Linpinski 
parameters, which considers the physicochemical 
drug descriptors of the molecular properties 
for the synthesized compounds as calculated by 
Molinspiration software. The partition coefficient 
(LogP: octanol/water partition coefficient) 
describes the equilibrium distribution between 
two liquid phases such as octanol and water. The 

total polar surface area (TPSA) is a measure of the 
extent of the molecules exposed polar area. The 
results show that compounds 3c, 3e, 3g, 3K satisfy 
Linpinski’s rule of five with no violations.20 Flavones 
3j, 3i, 3l and 3m violate the rule by presenting 
lipophilicity (Log P) greater than 5.0, which could 
cause problems with oral bioavailability. Flavones 
3c, 3e, 3g, 3K, 3i and 3m showed TPSA values lower 
than 90 Å2, values ranging from 30.21 - 76.03 Å2, 
indicating that these compounds would have a 
good permeability in the plasma cell membrane 
and across the blood brain barrier.

3. Conclusion

In conclusion, flavones 3c, 3e, 3g, 3i, 3k and 
3m showed moderate trypanocidal activity but 
none of the tested flavones were more active than 
reference compound benznidazole. However, 
this study showed some important aspects with 
regard to how structural modifications could 
favour the development of lead compounds for 
the treatment of Chagas disease. The results 
indicated that the presence of the methoxy group 
is beneficial for anti T. cruzi activity since flavones 
bearing this substituent were moderately active 
and essentially non-toxic. Moreover, structural 
modification with a halogen at position 3 of the 
dihydropyrone ring provided the most active 
flavone, which suggests that the introduction of 
different functionalities at this position could yield 
promising new compounds with trypanocidal 
properties.

4. Experimental Section

All commercial reagents were used as received. 
Anhydrous solvents were purchased from Sigma 
Aldrich. Flash column chromatography was 
performed using silica gel 200-400 Mesh. TLC 
analyses were performed using silica gel plates, 
using ultraviolet light (254 nm), phosphomolybdic 
acid or vanillin solution for visualization. Melting 
points are uncorrected and were recorded on 
a Buchi B-540 apparatus. For NMR data, the 
chemical shifts are reported in δ (ppm) referenced 
to residual solvent protons and 13C signals in 
deuterated chloroform. Coupling constants (J) 
are expressed in Hertz (Hz). Infrared spectra were 
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obtained on a Thermo Scientific Nicolet 380 FT-
IR apparatus (600–4000 cm−1, Nicolet Instrument 
Corp., Madison, WI, USA) using attenuated total 
reflection (ATR). High Resolution Mass Spectra 
were obtained on a Shimadzu HPLC-ESI-IT-TOF. 
SMILES notations of the flavone derivatives were 
inputted into an online software and subjected to 
molecular properties prediction by Molinspiration 
software (software version v2015.01).

4.1. Characterization data

Flavones were prepared according to literature 
methods.11 

2-phenyl-4H-chromen-4-one (3a): Product 
obtained as a white solid in 78%. m.p.: 95–97 °C 
(Lit.21 mp. 95 – 96 °C); 1H-NMR (300 MHz, CDCl3): 
δ 6.83 (s, 1 H), 7.42 (t, J = 8.0 Hz, 1H), 7.50–7.59 
(m, 4H), 7.67−7.74 (m, 1H), 7.91−7.95 (m, 2H), 
8.21 (dd, J = 1.7 Hz, 8.0 Hz, 1H); 13C-NMR (75 
MHz, CDCl3): δ 107.5, 118.1, 123.9, 125.2, 125.7, 
126.3, 129.1, 131.6, 131.7, 133.8, 156.3, 163.4, 
178.52; HRMS (ESI-TOF) m/z [M + H] Calculated 
for C15H11O2

+: 223.0754. Found: 223.0749.
2-(p-tolyl)-4H-chromen-4-one (3b): Product 

obtained as a white solid in 76%. m.p.: 109–110 
°C (Lit.22 mp. 110 – 112 °C); 1H-NMR (300 MHz, 
CDCl3): δ 2.43 (s, 3H), δ 6.87 (s, 1H), 7.31 (d, J = 
8.0 Hz, 2H), 7.42 (t, J = 8.0 Hz, 1H), 7.55 (d, J = 8.0 
Hz, 1H), 7.67 -7.72 (m, 1H), 7.81 (d, J = 8.3 Hz, 2H), 
8.21 (dd, J = 1.5 Hz, 8.0 Hz, 1H); 13C-NMR (75 MHz, 
CDCl3): δ 21.5, 106.8, 118.0, 123.8, 125.1, 125.6, 
126.2, 128.8, 129.7, 133.7, 142.3, 156.2, 163.6, 
178.45; HRMS (ESI-TOF) m/z [M + H] Calculated 
for C16H13O2

+: 237.2775. Found: 237.1779.

2-(4-methoxyphenyl)-4H-chromen-4-one (3c): 
Product obtained as a white solid in 81%. m.p.: 
156–157 °C (Lit.23 mp. 157 – 159 °C); 1H-NMR (300 
MHz, CDCl3): δ 3.90 (s, 3H),  6.75 (s, 1H), 7.02 (d, J 
= 8.9 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H), 7.54 (d, J = 8.3 
Hz, 1H), 7.67-7.69 (m, 1H), 7.88 (d, J = 8.9 Hz, 2H), 
8.23 (dd, J = 1.4 Hz, 7.9 Hz, 1H); 13C-NMR (75 MHz, 
CDCl3): δ 55.5, 106.2, 114.5, 117.9, 123.9, 124.0, 
125.1, 125.6, 127.9, 133.6, 156.2, 162.4, 163.4, 
178.3; HRMS (ESI-TOF) m/z [M + H] Calculated for 
C16H13O3

+: 253.0859. Found: 253.0851.

2-(4-chlorophenyl)-4H-chromen-4-one (3d): 
Product obtained as a white solid in 69%. m.p.: 
186–187 °C (Lit.24 mp. 187 – 188 °C); 1H-NMR (300 
MHz, CDCl3): δ 6.78 (s, 1H), 7.38 – 7.56 (m, 4H) 

7.69 -7.72 (m, 1H), 7.83 (d, J = 8.7 Hz, 2H), 8.19 (dd, 
J = 1.6 Hz, 7.9 Hz, 1H); 13C-NMR (75 MHz, CDCl3): 
δ 107.6, 118.0, 123.8, 125.4, 125.7, 127.5, 129.3, 
130.2, 133.9, 137.9, 156.2, 162.2, 178.2; HRMS 
(ESI-TOF) m/z [M + H] Calculated for C15H10ClO2

+: 
257.0364. Found: 257.0371.

2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one 
(3e): Product obtained as a white solid in 58%. m.p.: 
172–174 °C (Lit.25 mp. 172 – 174 °C); 1H-NMR (300 
MHz, CDCl3): δ 3.92 (s, 3H), 3.95 (s, 6H), 6.78 (s, 1H), 
7.12 (s, 2H),  7.42 (t, J = 7.7 Hz, 1H), 7.56 (d, J = 8.4 Hz, 
1H), 7.70 (t, J = 8.2 Hz, 1H), 8.20 (d, J = 7.9 Hz, 1H); 
13C-NMR (75 MHz, CDCl3): δ 56.3, 61.0, 103.6, 107.3, 
118.1, 123.8, 125.3, 125.6, 126.9, 133.8, 141.1, 153.5, 
156.2, 163.3, 178.4; HRMS (ESI-TOF) m/z [M + H] 
Calculated for C18H17O5

+: 313.1071. Found: 313.1073.

2-(furan-2-yl)-4H-chromen-4-one (3f): Product 
obtained as a white solid in 64%. m.p.: 130–131 °C 
(Lit.26 mp. 134 – 135 °C); 1H-NMR (400 MHz, CDCl3): 
δ 6.59 – 7.71 (m, 1H), 6.75 (s, 1H), 7.13 (d, J = 3.4 Hz 
1H),  7.39 (t, J = 7.8 Hz, 1H), 7.47 (d, J = 8.2 Hz, 1H), 
7.62 – 7.70 (m, 2H), 8.20 (dd, J = 1.4 Hz, 7.9 Hz, 1H); 
13C-NMR (100 MHz, CDCl3): δ 105.3, 112.6, 113.4, 
117.8, 124.0, 125.2, 125.7, 133.8, 145.9, 146.3, 
155.3, 155.7, 177.8; HRMS (ESI-TOF) m/z [M + H] 
Calculated for C13H9O3

+: 213.0546. Found: 213.0553.

2-(3-nitrophenyl)-4H-chromen-4-one (3g): 
Product obtained as a white solid in 53%. m.p.: 
195–196 °C (Lit.27 mp. 196 – 197 °C); 1H-NMR (300 
MHz, CDCl3): δ 6.90 (s, 1H), 7.46 (t, J = 8 Hz, 1H), 
7.62 (d, J = 8.3 Hz 1H), 7.72 -  7.78 (m, 2H), 8.21 
(dd, J = 1.5 Hz, 8.0 Hz, 2H), 8.38 (dd, J = 2 Hz, 8.2 
Hz, 1H), 8.80 (t, J = 2 Hz, 1H); 13C-NMR (75 MHz, 
CDCl3): δ 108.8, 118.2, 121.2, 123.8, 125.7, 125.8, 
125.9, 130.3, 131.8, 133.6, 134.3, 148.7, 156.1, 
160.5; HRMS (ESI-TOF) m/z [M + H] Calculated for 
C15H10NO4

+: 268.0604. Found: 268.0601.

2-(4-fluorophenyl)-4H-chromen-4-one (3h): 
Product obtained as a white solid in 71%. m.p.: 
147–148 °C (Lit.28 mp. 145 – 148 °C); 1H-NMR (300 
MHz, CDCl3): δ 6.77 (s, 1H), 7.18 -  7.26 (m, 2H), 
7.42 (t, J = 7.8 Hz, 1H), 7.54 (d, J = 8.4 Hz 1H), 7.69 
– 7.72 (m, 1H),  7.90 -  7.95 (m, 2H), 8.20 (dd, J 
= 1.5 Hz, 8.0 Hz, 1H); 13C-NMR (75 MHz, CDCl3): 
δ 108.8, 118.2 (C-F, d, J = 22.9 Hz), 121.2, 123.8, 
125.7, 125.8, 125.9 (C-F, d, J = 3.1 Hz), 130.3 , (C-F, 
d, J = 8.8 Hz), 131.8, 133.6, 134.3, 148.7, 156.1, 
160.5 (C-F, d, J = 250.6 Hz), 178.0; HRMS (ESI-TOF) 
m/z [M + H] Calculated for C15H10FO2

+: 241.0659. 
Found: 241.0665.
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6,8-dichloro-2-(4-methoxyphenyl)-4H-
chromen-4-one (3i): Product obtained as a white 
solid in 59%. m.p.: 183–185 °C (Lit.29 mp. 182 – 
184 °C); 1H-NMR (300 MHz, CDCl3): δ 3.92 (s, 3H), 
6.78 (s, 1H), 7.05 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 
4.0 Hz, 1H), 7.94 (d, J = 8.0 Hz, 2H), 8.10 (d, J = 4 
Hz, 1 H); 13C-NMR (75 MHz, CDCl3): δ 55.6, 105.7, 
114.7, 123.1, 123.8, 124.3, 125.7, 128.2, 130.7, 
133.5, 150.4, 162.9, 163.5, 176.3; HRMS (ESI-TOF) 
m/z [M + H] Calculated for C16H11Cl2O3

+: 321.0080. 
Found: 321.0084.

6-chloro-2-(4-chlorophenyl)-4H-chromen-4-
one (3j): Product obtained as a white solid in 63%. 
m.p.: 226–227 °C (Lit.23 mp. 226 – 227 °C); 1H-NMR 
(300 MHz, CDCl3): δ 6.83 (s, 1H), 7.53 – 7.57 (m, 
3H), 7.67 (dd, J = 2.6 Hz, 8.9 Hz, 1H), 7.87 (d, J = 
8.7 Hz, 2H), 8.82 (d, J = 2,6 Hz, 1H); 13C-NMR (75 
MHz, CDCl3): δ 107.6, 119.8, 124.9, 125.2, 127.6, 
129.5, 129.8, 131.4, 134.1, 138.2, 154.5, 162.5, 
177.0; HRMS (ESI-TOF) m/z [M + H] Calculated for 
C15H9Cl2O2

+: 290.9974. Found: 290.9969.

6-chloro-2-(4-methoxyphenyl)-7-methyl-4H-
chromen-4-one (3k): Product obtained as a white 
solid in 60%. m.p.: 225–227 °C (Lit.30 mp. 227 – 
227 °C); 1H-NMR (300 MHz, CDCl3): δ 2.54 (s, 3H), 
3.92 (s, 3H), 6.74 (s, 1H), 7.04 (d, J = 8.9 Hz, 2H), 
7.47 (s, 1H), 7.87 (d, J = 8.9 Hz, 2H), 8.19 (s, 1 H); 
13C-NMR (75 MHz, CDCl3): δ 20.9, 55.5, 105.9, 
114.5, 119.8, 123.0, 123.8, 125.4, 128.0, 131.7, 
142.7, 154.4, 162.5, 163.5, 177.2; HRMS (ESI-TOF) 
m/z [M + H] Calculated for C17H14ClO3

+: 301.0626. 
Found: 301.0619.

2,2’-(1,3-phenylene)bis(4H-chromen-4-one) 
(3l): Product obtained as a white solid in 74%. 
m.p.: 248–250 °C (Lit.31 mp. 249 – 250 °C); 1H-NMR 
(300 MHz, CDCl3): δ 6.98 (s, 2H), 7.50 (t, J = 8.0 Hz, 
2H), 7.67 (d, J = 8.4 Hz, 1H), 7.73 – 7.81 (m, 4H), 
8.11 (dd, J = 2 Hz, 8.0 Hz, 2H), 8.28 (dd, J = 2Hz, 8.0 
Hz, 2H), 8,54 (m, 1H); 13C-NMR (75 MHz, CDCl3): 
δ 108.3, 118.2, 123.9 124.0, 125.6, 125.8, 129.1, 
129.9, 132.9, 134.2, 156.3, 162.2, 178.4; HRMS 
(ESI-TOF) m/z [M + H] Calculated for C24H15O4

+: 
367.0965. Found: 367.0970.

Flavone 3d was converted to flavone 3m 
following the method described by Bird and 
co-workers [32]. 3-bromo-2-(4-chlorophenyl)-
4H-chromen-4-one (3m): Product obtained as a 
white solid in 62%. m.p.: 175–176 °C (Lit.[22] 
mp. 178 – 179 °C); 1H-NMR (300 MHz, CDCl3): 
δ 7.46 – 7.52 (m, 4H), 7.70 – 7.74 (m, 1H), 

7.80 – 7.83 (m, 2H), 8.26 (dd, J = 1.6Hz, 8.0Hz, 
1H); 13C-NMR (75 MHz, CDCl3): δ 109.4, 117.8, 
121.7 125.9, 126.5, 128.7, 130.7, 131.2, 134.3, 
137.4, 155.5, 160.8, 172.9; HRMS (ESI-TOF) m/z 
[M + H] Calculated for C15H9BrClO2

+: 334.9496. 
Found: 334.9489.

4.2. Anti-Trypanosoma cruzi activity assay 
(amastigotes and trypomastigotes)

The in vitro anti-T. cruzi activity was evaluated 
on L929 cells (mouse fibroblasts) infected with 
Tulahuen strain of the parasite expressing the 
Escherichia coli β-galactosidase as reporter 
gene. Briefly, for the bioassay, 4,000 L929 cells 
were added to each well of a 96-well microtiter 
plate. After an overnight incubation, 40,000 
trypomastigotes were added to the cells and 
incubated for 2 h. Then the medium containing 
extracelullar parasites was replaced with 200 μl 
of fresh medium and the plate was incubated 
for an additional 48 h to establish the infection. 
For IC50 determination, the cells were exposed to 
each synthesized compound at serial decreasing 
dilutions and the plate was incubated for 96 h. 
After this period, 50 μl of 500 μM chlorophenol 
red beta-D-galactopyranoside (CPRG) in 0.5% 
Nonidet P40 was added to each well, and the 
plate was incubated for 16 to 20 h, after which the 
absorbance at 570 nm was measured. Controls 
with uninfected cells, untreated infected cells, 
infected cells treated with benznidazole at 3.8 
μM (positive control) or DMSO 1% were used. The 
results were expressed as the percentage of T. 
cruzi growth inhibition in compound-tested cells 
as compared to the infected cells and untreated 
cells. The IC50 values were calculated by linear 
interpolation. Quadruplicates were run in the 
same plate, and the experiments were repeated 
at least once.

4.3. In vitro cytotoxic test of trypanocidal 
compounds 

The active compounds were tested in vitro 
for determination of cellular toxicity against 
uninfected L-929 cells using the alamarBlue® 
dye. The cells were exposed to compounds at 
increasing concentrations starting at IC50 value for 
T. cruzi. After 96 h of incubation with the tested 
compounds, the alamarBlue® was added and 
the absorbance at 570 and 600 nm measured 
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after 4-6 h. The cell viability was expressed as the 
percentage of difference in the reduction between 
treated and untreated cells. Quadruplicates were 
run in the same plate, and the experiments were 
repeated at least once. CC50 values were calculated 
by linear interpolation and the selectivity index 
(SI) was determined based on the ratio of the CC50 
value in the host cell divided by the IC50 value of 
the parasite. 
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