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Abstract

Resumo: O uso da espectroscopia na região do infravermelho próximo, combinada com metodologias de 
análise multivariada, tem permitido a análise quantitativa, direta e não destrutiva de várias substâncias 
orgânicas e inorgânicas em amostras complexas. Neste trabalho foi investigado o possível uso da abordagem 
quimiométrica para a determinação direta das atividades enzimáticas de celulases e xilanase com base na 
correlação matemática entre dados obtidos por metodologia tradicional e os obtidos por espectroscopia 
de infravermelho próximo. Para este fim, um produto comercial contendo as enzimas alvo foi tratado 
termicamente para a construção de variabilidade amostral. As atividades de FPase, CMCase, β-glucosidase 
e xilanase foram determinadas por métodos colorimétricos convencionais. A regressão parcial por mínimos 
quadrados foi adotada como ferramenta matemática para o estudo de correlação de dados. O coeficiente 
de determinação obtido para a validação das regressões realizadas variou de 0,84 a 0,92. Todos os valores 
da relação desempenho / desvio foram > 2,5. A seleção das bandas espectrais foi essencial para o sucesso 
dos ajustes das regressões. A possibilidade de determinação direta de atividades enzimáticas em solução, 
aqui retratada, representa uma prova de conceito que visa dispensar o processo de catálise como etapa 
necessária para a determinação analítica das atividades enzimáticas.

The use of spectroscopy in the near infrared region, in combination with multivariate analysis methodologies, 
has enabled the quantitative, direct and non-destructive analysis of several inorganic and organic substances in 
complex samples. The aim of the current study was to investigate the possible use of chemometric approach 
to directly determining xylanase and cellulase activities based on mathematical correlation between data from 
traditional methods and the ones from direct near infrared spectroscopy of enzyme samples. Commercial 
product comprising the target enzymes was subjected to heat treatment for construction of sample variability. 
FPase, CMCase, β-glucosidase and xylanase activities were determined by conventional colorimetric methods. 
Partial least squares regression was adopted as mathematical tool to correlate the analyses. The determination 
coefficient recorded to validation of regressions ranged from 0.84 to 0.92; all ratio of performance to deviation 
values were > 2.5. Spectral band selection was essential to enable successful regression adjustments. The 
likelihood of directly determining enzymatic activity in solution represents an innovative concept, since it does 
not require catalysis process as necessary step to analytically determine the enzymatic activity.
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1. Introduction

The activity of enzymes such as cellulases 
and hemicellulases is traditionally determined 
through the colorimetric quantification of 
products released under predefined time and 
reactional conditions, based on univariate 
measurement principles.1-4 Enzymes, as 
molecular entities, are not the target of direct 
examination in this analytical approach. Overall, 
traditional methodologies are time-consuming 
and expensive, mainly with regards to reagents, 
equipment and human resources used in the 
analytical process.5 A new fast, cheap and robust 
methodology based on multivariate analysis of 

data associated with instrumental spectroscopy 
methods has enabled advancements in biological 
sample analysis.6-8 This new analytical approach 
is called Chemometrics; it is a discipline based 
on the use of a set of mathematical, statistical 
and computational tools used to develop 
multivariate strategies for chemical data 
evaluation with qualitative and quantitative 
applications.9 The analytical methods based 
on chemometrics provides to reduce time, 
reagent consumption and number of steps in the 
analysis of complex samples based on analytical 
process automation.10,11 In theory, any analytical 
technology, such as infrared spectroscopy, 
fluorescence spectroscopy, nuclear magnetic 
resonance spectroscopy, mass spectrometry, 
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UV-Vis spectrophotometry and chromatography, 
can be used in combination with chemometrics 
in order to predict analytes’ physical, chemical 
or biological features.12 There are records in the 
scientific literature about the use of chemometrics 
to determine enzymatic activity;13-15 however, 
these initiatives target the substrate or products 
of enzymatic catalysis as analyte, in the same 
way it is done in traditional methodologies. This 
chemometrics-use way disregards the chemical 
nature of enzymes and their ability to respond 
to the same chemometric methods used to 
quantify the product of enzymatic catalysis. 
Infrared spectroscopy is one of the most used 
techniques in chemometric models adopted 
for quantitative determination purposes. The 
infrared spectrum analysis of proteins generate 
data with high information content. This factor 
turns infrared spectroscopy into a valuable 
tool to investigate protein structure.16 Infrared 
spectroscopy also has the advantage of being 
a fast and non-destructive method that does 
not require reagents and allows simultaneously 
detecting several analytes.11 The aim of the 
current study was to investigate the possibility 
of directly and simultaneously determining the 
enzymatic activity of cellulases and xylanases 
from commercial enzymatic preparation, based 
on near infrared spectroscopy and chemometrics 
principles, as well as to present a new approach 
to the enzyme dosage-development method. 

2. Materials and Methods

2.1. Enzymes and heat treatment

Commercial enzymatic cocktail Celluclast® 1.5 
L (Novozymes™, Denmark) was used as source of 
cellulase and xylanase enzymes evaluated in the 
current study. The aforementioned commercial 
enzyme preparation was subjected to heat 
treatment (at 70ºC) in thermostatic water bath 
in order to generate the variability in the target 
enzyme activity values. Aliquots of 2 mL of heat-
treated samples were recovered on centrifuge 
plastic microtubes, cooled in ice bath for 30 
seconds and centrifuged at 10,000 rpm for 10 
minutes, at three-minute intervals. The recovered 
supernatants were ice stored for up 60 minutes 
for subsequent analytical determinations. 

2.2 Enzyme activity determinations 

The activity of FPase, CMCase (endoglucanase), 
β-glucosidase and xylanase were determined 
based on the methodology originally suggested 
by IUPAC 1 and Ghose and Bisaria,17 which was 
herein adapted to 96-well microplate scale, with 
minimal modifications. All assays performed 
for enzymatic activity determination comprised 
seven repetitions. The blank test was performed 
by replacing the enzymes with distilled water. 
Each assay conducted on microplate was followed 
by analytical curves using glucose and xylose 
(0 to 1 g L-1) as standard.

2.2.1. FPase

FPase activity was determined by using 
Whatman N. 1 filter paper strips (1.0 x 0.3 cm) 
deposited on the walls of microplate wells. 50 µL 
of 50 mmol L-1 sodium acetate buffer, at pH 4.8, 
and 50 µL of enzyme solution were added to each 
well. The enzymatic hydrolysis of the filter paper 
was maintained under heating in oven at 50ºC for 
60 minutes. Next, 100 μL of 3,5-dinitrosalicylic 
acid reagent (DNS) was added to each well to 
determine the reducing sugars.18 Subsequently, 
the microplate was incubated in water bath at 
70ºC for 30 minutes. Finally, it was cooled in ice 
bath and read in microplate reader (Biochrom, 
model Asys UVM 340) at 540 nm. One FPase Unit 
was defined as the amount of enzyme capable of 
releasing 1 µmol of glucose-equivalent per minute 
under assay conditions.

2.2.2. CMCase

CMCase activity was determined through the 
addition of 50 µL of 1% carboxymethylcellulose 
solution (50 mmol L-1 acetate buffer, pH 4.8) to the 
microplate wells, which were subsequently added 
with 50 µL of enzyme solution. Oven incubation 
was carried out at 50ºC for 30 minutes to enable 
enzymatic hydrolysis of CMC; next, 100 μL of DNS 
reagent were added to each well. The microplate 
was incubated in water bath at 70ºC for 30 
minutes, cooled in ice bath and read in microplate 
reader (Biochrom, model Asys UVM 340) at 540 
nm. One CMCase Unit was defined as the amount 
of enzyme capable of releasing 1 µmol of glucose-
equivalent per minute under assay conditions.
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2.2.3. β-glucosidase

β-glucosidase activity was determined by 
mixing 50 μL of 15 mmol L-1 cellobiose solution 
(50 mmol L-1 sodium acetate buffer, pH 4.8) and 
50 μL of enzyme solution in microplate wells. The 
plate was subjected to incubation at 50ºC for 10 
minutes, transferred to water bath with boiling 
water for 1 minute and cooled in ice bath. The 
released glucose was quantified based on the 
GOD-POD enzymatic-colorimetric method by 
Lloyd.19 One unit of β-glucosidase was defined as 
the amount of enzyme capable of releasing 1 μmol 
of glucose per minute under assay conditions. 

2.2.4. Xylanase

Firstly, 50 µL of birchwood xylan solution (1.4% 
in 50 mmol L-1 sodium acetate buffer, pH 4.8) was 
mixed with 50 µL of enzyme solution in microplate 
wells. Microplates were incubated in oven at 50ºC 
for 5 minutes to enable the enzymatic hydrolysis 
of birchwood xylan. Next, 100 μL of DNS reagent 
were added to each well; reducing sugars’ 
reaction was performed in water bath at 70ºC for 
30 minutes. Microplate was left to cool in ice bath 
and read in microplate reader (Biochrom, model 
Asys UVM 340) at 540 nm. One xylanase Unit 
was defined as the amount of enzyme capable of 
releasing 1 µmol of xylose-equivalent per minute, 
under assay conditions.

2.3. Near infrared spectroscopy

The very same eleven samples deriving from 
the pretreated enzymatic preparation used for 
traditional enzymatic activity determinations, as 
described in 2.1 item, were analyzed in near infrared 
spectrophotometer (model NIR 9000 PLS, FEMTO, 
Brazil) after 100X diluted with distilled water. The 
parameters of the acquisition were spectral width 
from 1100 to 2500 nm, transmittance mode at 
2-nm resolution and it generated 700 absorbance 
values within 70 seconds. Three spectra were 
generated for each sample, totalizing 33 spectra. 

2.4. Spectral data processing and multivariate 
analysis

Unscrambler X software (Camo Software, 
Oslo, Norway) was used for data processing and 

multivariate analyses. All primary spectral data 
were pre-processed based on the Savitzky-Golay 
smoothing,20 Standard Normal Variate (SNV) 
transformation and detrending methods.21 Partial 
Least Square Regression (PLS) was the algorithm 
used for multivariate data analysis.22 The y and 
x components of data matrix were represented 
by enzyme activities of all samples and by all 
NIR spectra, respectively. To validate the model 
performance was used a cross-validation approach 
to split the data into training and test sets for 
simulated and real data set with 20 segments 
choose randomly. Outliers were identified and 
removed through the combined observations of 
the samples behavior on plot of Y residual values 
versus predicted Y values, normal quantile plot 
(Q-Q plot) and score plot (Hoetlling T2 ellipse) 
constructed according to the modeling of each 
enzyme activity generated with optimal number 
of factors at 5% significance level. The quality 
of PLS regression-based models was evaluated 
through RMSEC (Root Mean Square Error of 
Calibration), RMSECV (Root Mean Square Error of 
Cross Validation), RPD (Ratio of Performance to 
Deviation) and RER (Range Error Ratio) analysis. 
RPD was calculated as the ratio between the 
standard deviation of the reference data for the 
validation set and the standard error of prediction 
(from cross-validation). RER was calculated as the 
ratio between the range in validation reference 
data and the standard error of prediction (from 
cross-validation).23

3. Results and Discussion

Enzymatic activity values recorded for FPase, 
CMCase, xylanase and β-glucosidase found in the 
commercial enzymatic preparation Celluclast® 
are shown in table 1. Collected data allowed 
observing that the enzymatic cocktail presented 
the greatest relative amount of xylanase activity 
(1.043 U mL-1); it was followed by β-glucosidase 
(254 U mL-1), CMCase (155 U mL-1) and FPase 
(68 U mL-1). Coefficient of variation rates 
(CV%) recorded in the colorimetric analytical 
determinations adapted to the microplate scale 
ranged from 2.1 to 5.9. The observed variance 
was comparable to those observed in other 
methodological proposals;24-27 it was considered 
acceptable for enzyme activity determinations.
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Heat treatment application to commercial 
preparation Celluclast® at 70 °C for up to 30 
minutes resulted in 11 samples, whose target 
enzymatic activity was determined based on the 
traditional approach, as previously described 
in section ‘Methodology’. Gradual thermal 
denaturation process enabled obtaining samples 
with the following minimum and maximum 
enzymatic activity and coefficients of variation: 
FPase (14.2 to 81.3 U mL-1, CV=0.67), CMCase 
(97.1 to 186.1 U mL-1, CV=0.25), β-glucosidase 
(83.9 to 285.9 U mL-1, CV=0.32) and xylanase 
(144.9 to 1,088.5 U mL-1, CV=0.71). Another 
notable phenomenon observed in the thermal 
denaturation process lies on the selective way, 

according to which, the enzymatic activity decay 
took place (Figure 1). Xylanolytic activity was 
mostly affected by the heat treatment in the first 
half of the exposure time, whereas CMCase activity 
was the least affected throughout the treatment 
period. On the other hand, β-glucosidase activity 
was mostly affected in the second half of the heat 
exposure time. This asymmetric behavior has 
generated samples with different enzyme activity 
rates. These results were essential to generate 
sample variability, which allowed maintaining the 
fortuitous nature of the enzyme solution matrix. 
If this process had happened in a homogeneous 
way, as it happens in dilution processes, it would 
masking the contribution of target analytes.

U: amount of enzyme capable of forming 1 µmol of the evaluated product per minute under assay conditions; CV: 
Coefficient of variation

Table 1. Mean FPase, CMCase, β-glucosidase and xylanase enzymatic activity values recorded for 
enzyme preparation Celluclast®

Enzymatic Activity (U mL-1)

Values β-glucosidase CMCase FPase Xylanase

Min 248.61 144.64 67.13 1018.64

Max 273.58 162.12 69.85 1060.04

Average 257.74 155.06 68.88 1043.77

CV% 5.34 5.94 2.20 2.12

Figure 1. Heat treatment progress and its effect on enzyme activity. Vertical bars represent the standard 
deviation to each activity determination
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The very same samples obtained through the 
heat treatment have produced 33 infrared spectra 
in the 1500 to 2500 nm horizon, when they were 
subjected to near infrared spectroscopy, including the 
repetitions performed in triplicate. The spectroscopic 
profile of the samples is shown in figure 2A. It was 
possible visually highlighting two spectral areas 
presenting large irregular signal variation in regions 
ranging from 1862 to 2032 nm and from 2288 to 
2500 nm. These two regions have shown spectral 
behavior typical of noise and signal dispersion. 
Non-linear Iterative Partial Least Square algorithm 
(NIPALS) application to investigate correlation 
between independent variables (response), 
represented by the enzymatic activities evaluated 
(FPase, CMCase, xylanase and β-glucosidase), and 

the predictors, by taking into consideration all 
spectral data set comprising all readings from 1500 
to 2500 nm, resulted in very low coefficients of 
determination (R2) and very high root-mean-square 
error (RMSE) values (Table 2). The first strategy used 
to make the set of predictors more appropriate to 
model the correlation to independent variables lied 
on removing the noise region. This region became 
evident due to the application of data transformation 
by second order derivative (Figure 2B), which, in its 
turn, led to increased noise-to-signal ratio. Spectral 
data were scaled to the 1100-1830 nm range. There 
was significant improvement in values recorded for 
R2 and RMSE when the PLS algorithm (NIPALS) was 
run with the resized data set, although without any 
further processing (Table 2).

PLS Measures
Enzymes

β-glucosidase Fpase Cmcase Xylanase

W
ith

ou
t r

es
izi

ng

Samples 33 33 33 33
Factors 1 1 1 1

R2
Cal 0.534 0.489 0.518 0.455

R2
Val 0.508 0.453 0.463 0.424

RMSEC 42.19 16.93 21.80 240.52
RMSEV 47.04 12.37 24.26 266.67
BiasVal 0.42 -0.04 -0.003 -0.27
RPD 1.31 1.26 1.29 1.22
RER 4.29 5.42 3.67 3.54

W
ith

 re
siz

in
g 

an
d

W
ith

ou
t p

re
-p

ro
ce

ss
in

g

Samples 33 33 33 33
Factors 4 4 4 4

R2
Cal 0.824 0.926 0.847 0.942

R2
Val 0.783 0.751 0.771 0.729

RMSEC 25.93 6.42 12.27 78.28
RMSEV 29.73 12.37 15.83 172.28
BiasVal -0.91 -0.63 -0.55 -9.43
RPD 2.07 1.91 1.98 1.89
RER 6.66 5.35 5.53 5.40

W
ith

 re
siz

in
g 

an
d 

W
ith

 p
re

-p
ro

ce
ss

in
g

Samples 30 30 25 27
Factors 4 7 6 6

R2
Cal 0.935 0.959 0.987 0.963

R2
Val 0.857 0.871 0.920 0.839

RMSEC 13.25 3.01 2.34 57.23
RMSEV 21.46 8.06 6.63 124.47
BiasVal -0.83 -0.32 0.07 -7.60
RPD 2.88 2.61 4.72 2.61
RER 7.04 8.19 11.91 7.45

Table 2. Analysis of the calibration and validation of models used to predict enzymatic activity 
through near infrared spectroscopy based on partial least squares regression

R²Cal = coefficient of determination for calibration; R²Val = coefficient of determination for validation; PLS: Partial Least 
Square; RMSEC= root mean square error of calibration; RMSECV= root mean square error of cross validation; RPD= Ratio of 
Performance to Deviation; RER= Range Error Ratio
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In addition to resizing the spectral data, 
combinations of mathematical data preprocessing 
and sample outlier removal were tested to 
improve the calibration and validation of the 
regression models. Spectral data preprocessing 
is the most important step before chemometric 
bi-linear modeling.28 Phenomena such as baseline 
shifts among samples, scatter effects, as well as 
other unspecific and random noises, can reduce 
the signal-to-noise ratio (SNR), affect spectra 
resolution and hinder the accuracy and precision 
of calibration models.29,30 Smoothing treatments, 

normalization by the standard deviation of the 
signals and removal of systematic shifts inherent 
to the adopted equipment or to the sample 
matrix were combined in the current study. 
The combination of second-order polynomial 
Savitzky-Golay smoothing transformation with 
5-point window, which was followed by Standard 
Normal Variate transformation (SNV), has resulted 
in the best PLS regression model adjustment 
for β-glucosidase activity prediction. The SNV 
combined with fourth-order polynomial detrend 
transformation was the most suitable combination 

Figure 2. NIR scanning spectra of Celluclast® samples obtained after heat treatment application at 
70ºC, for different times. (A). NIR spectra from primary data set. (B). NIR spectra from data transformed 

by derivative 2nd. The figures present 33 overlapped spectra
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to model the PLS regression of FPasic, CMCasic 
and xylanase activity.

Calibration models used for β-glucosidase, 
CMCase, FPase and xylanase enzyme prediction 
presented high coefficient of determination (R²Cal) 
(>0.93); this outcome pointed towards the strong 
interaction between values recorded for enzymatic 
activities determined through conventional 
colorimetric methodology and the information 
available in the NIR spectra region (Table 2). The 
validation of the regression model applied to 
the relatively small set of samples evaluated in 
the current study used 20 segments of randomly 
crossed samples. Cross-validations have shown 
coefficient of determination (R²Val) ranging from 
0.84 to 0.92. RMSE values were significantly lower 
than the ones determined through primary data, 
without preprocessing. 

All regressions were run based on 1 to 7 factors. 
The increased number of factors (number of latent 
variables) tended to increase the coefficient of 
determination. However, the apparent increase 
in the quality of the regression model also meant 
increased RMSE values, which is only useful to fit 
the observations of the learning sample set rather 
than new observations.31, 32 The optimal number 
of factors for each modeling was determined 
through analysis of residual variance versus RMSE 
curve generated in the Unscrambler software, 
observing the break in the decreasing trend of 
the residual variance. After resizing, predictor 
preprocessing (NIR data) and outlier removal 
procedures were over, the number of optimal 
factors used for modeling regressions increased 
from 4 to 6 for CMCase and xylanase activity, 
and from 4 to 7 for FPase activity. However, 

Figure 3. Correlation profile between reference values and values predicted for FPasic, CMCasic, 
Xylanasic and β-glucosidasic activity through the modeling of NIR spectroscopy data based on PLS
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RMSE values decreased, and RPD and RER values 
significantly increased. This probably happened 
because was possible maintaining at least four 
times the number of samples in comparison 
to the number of factors selected for cross-
validation predictions, in all cases. According to 
Baum et al. 11, the number of samples should be 
at least 3 times larger than the number of latent 
variables to enable good adjustments in the 
regression model. All PLS models adjusted for the 
enzymatic activity predictions evaluated based on 
cross validation in the present study reached RPD 
values > 2.6. According to Viscarra Rossel et al.,33 
RPD values > 2.5 indicate excellent quantitative 
model/predictions. In addition, models used to 
predict FPase and CMCase activity recorded RER 
values of 8.2 and 11.9, respectively. According to 
thresholds set by Malley et al.,34 10 ≤ RER < 15 
values are moderately successful, whereas 8 ≤ RER 
<10 values indicate moderately useful prediction 
models. Correlation curves between predicted 
and reference values for regression models 
generated based on preprocessed spectral data is 
shown in figure 3. Lines passing through zero are 
theoretical and illustrate a unitary correlation.

4. Conclusion 

Results in the present study enabled 
concluding that spectroscopy application in the 
near infrared region to chemometrically quantify 
the activity of the herein investigated enzymes 
was capable of producing an acceptable and 
promising mathematical correlation to develop 
the original methodology. This approach opens 
room for the development of direct enzyme 
activity determination methods based on enzyme 
observation as molecular entity, rather than 
on substrates or products of enzyme-catalyzed 
reactions. The possible adoption of this type of 
methodological approach implies shorter analysis 
time, reduced reagent amounts or dispensation, 
lower generation of chemical waste by analytical 
processes and likely reduced analysis cost.
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