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We propose an analytical method based on fourier transform infrared–attenuated total reflectance (FTIR-ATR) spectroscopy to detect 
the adulteration of petrodiesel and petrodiesel/palm biodiesel blends with African crude palm oil. The infrared spectral fingerprints 
from the sample analysis were used to perform principal components analysis (PCA) and to construct a prediction model using partial 
least squares (PLS) regression. The PCA results separated the samples into three groups, allowing identification of those subjected 
to adulteration with palm oil. The obtained model shows a good predictive capacity for determining the concentration of palm oil 
in petrodiesel/biodiesel blends. Advantages of the proposed method include cost-effectiveness and speed; it is also environmentally 
friendly. 
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INTRODUCTION

The necessity of reducing oil dependency and greenhouse gas emis-
sions has forced many countries to explore the diversification of their 
energy matrices, incorporating renewable energies.1 Such energies are 
advantageous because they can be produced from renewable supplies. 
Biofuels are degradable, favoring an equilibrium of the carbon cycle; 
furthermore, biofuels have physical and chemical properties similar 
to those of gasoline and diesel oil and so can be used in combustion 
engines without requiring significant changes to those engines.2 Among 
biofuels, biodiesel has experienced an increasing demand all over the 
world in the last few years. The estimated biodiesel consumption in 
2004 in the U.S.A. was about 1.135 × 108 L; whereas the European 
Union consumed a volume of about 9.27 × 108 L in 2006. Consumption 
is estimated to increase up to 2.649 × 109 L by 2015.3 Biodiesel is a 
biofuel obtained from transesterification of vegetable oil or animal fat 
with a low molecular weight alcohol under the presence of a catalyst.4 

The most commonly used oils for synthesizing biodiesel are 
canola oil, soybean oil, sunflower oil, and palm oil. The cultivation 
of African palm oil for producing oil has undergone a significant 
increase in the last few years. In 2012, approximately 25% of the 
worldwide production of oil was obtained from this source. Its low 
cost and high yields (up to 5.5 t ha−1) make it a feasible option as a 
raw material for biodiesel production.5

Biodiesel can be used alone or in blends in diesel motors; cur-
rently, several mixtures with petrodiesel are prepared in different 
ratios: 2%, 5%, 10%, 15%, and 20% (B2, B5, B10, B15, and B20), 
which are the most commonly used in the world. Its use contributes 
toward decreasing carbon dioxide emissions into the atmosphere.6

The adulteration of fuels is an illegal but very common practice 
throughout the world. It involves adding a solvent or vegetable oil to 
the fuel (diesel, gasoline, or biodiesel), changing the quality of the fuel 
and so causing it to not comply with quality control specifications. 

Adulteration causes serious problems: it can block the injectors of 
engines, decrease the heat capacity of the fuel leading to increased 
consumption, and diminish the combustion efficiency with a corre-
sponding increase in contaminant emissions such as solid particles, 
unburned hydrocarbons, and toxic gases, which favor the formation 
of acid rain, global warming, and the development of both respiratory 
and cardiac diseases. From the social and economic point of view, 
the adulteration of fuels causes tax avoidance, unfair competition 
in the market, and economic losses for the state and the consumer.7

The quality control standards for fuels as established in the ASTM 
(ASTM 4052, ASTM D 445, ASTM D 4737, ASTM D 93, and ASTM 
D 86) are based on the measurement of certain physical properties, so 
it is not possible to determine the adulteration of fuels with vegetable 
oils by means of these standards.8 To do this, specialized techniques 
such as ionization mass spectrometry coupled with high-resolution 
gas chromatography are required. Some inconveniences of this 
technique are the high cost of the equipment and its maintenance, 
the high costs of reagents, that qualified personnel are required for 
its operation, and samples need to be pretreated, thus increasing the 
overall cost of the analysis.9,10 

As the use of petrodiesel/diesel blends increases every day 
throughout the world, it is becoming necessary to develop precise, 
fast, easy to use, and inexpensive methods for the determination of 
adulteration in fuels. Spectroscopic techniques have these advantages 
and it is feasible to apply them to the evaluation of fuel quality. One of 
the most useful spectroscopic techniques for this purpose is infrared 
spectroscopy, which is used for monitoring the synthesis of biodiesel 
in real time11-17 and for determining the concentration of biodiesel 
in mixtures with petrodiesel.18-21 Currently, infrared spectroscopy, 
spectrofluorimetry, RAMAN spectroscopy, and nuclear magnetic 
resonance spectroscopy, together with chemometric analysis enable 
the development of predictive models for the determination of adul-
teration with vegetable oil of diesel or diesel/biodiesel blends.22–24 On 
the other hand, analysis using PCA and SIMCA (screening) allows 
the detection of samples adulterated with used vegetable oil.25–27 
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Chemometric methods

Chemometric or multivariate analysis is defined as a chemical 
discipline that uses mathematical and statistical methods to design me-
asurement procedures and to obtain as much chemical information as 
possible from data analysis.28 Some of these methods are listed below.

Principal components analysis (PCA)

This method is used to reduce the dimensionality of a multivariate 
data set in exploratory analysis to visualize the significant information 
from the multivariate signals, and to represent them with a reduced 
number of components.29

Partial least squares (PLS) regression 

This is one of the most commonly used methods in multivariate 
calibration. It allows determination of the degree of relationship 
between a set of X-predictor variables and a set of y responses or 
output variables. It is widely used for multicomponent spectral analy-
sis, especially for data obtained from IR, NIR, UV–Vis, RAMAN 
spectroscopy, and spectrofluorimetry. To build a prediction model 
using partial least squares (PLS) regression, either regions or the 
full spectrum that provide relevant information that solves a speci-
fic problem can be employed.30 When building a prediction model 
using PLS regression, mathematically a linear expression is obtained 
(Equation 1).

	 	 (1)

where Y represents the predictive property, in this case the palm oil 
concentration; I is the intensity of each spectrum in the calibrated 
region; b is a vector of coefficients calculated during the calibration 
that relates the physical or chemical property with the spectroscopic 
data; and e is the matrix containing the errors.31

A large volume of African palm oil is produced worldwide that, 
because of its low cost, could be used to adulterate fuels. The aim of 
this work was to develop a methodology using fourier transform in-
frared–attenuated total reflectance (FTIR–ATR) spectroscopy together 
with chemometric techniques for determination of the adulteration of 
petrodiesel or petrodiesel/biodiesel blends with African crude palm 
oil, and to develop a prediction model for determining the concen-
tration of palm oil in petrodiesel/biodiesel blends.

EXPERIMENTAL 

Methanol and sodium hydroxide reactive grade from Fermont 
were used for the synthesis of biodiesel. African crude palm oil 
commercial grade was acquired from AGROIPSA S.A. of Jalapa, 
México. Petrodiesel was acquired from a Petróleos Mexicanos 
(PEMEX) certified franchise. 

Synthesis of biodiesel

The biodiesel used in this study was synthesized in a one-liter 
spherical glass flask equipped with a straight condenser using water 
as cooling medium for condensing the methanol vapor. A digital 
thermometer (Thomas Scientific 0.01  °C) with a platinum sensor 
was used for the measurement of reaction temperature. Mixing of 
reagents was performed under heating conditions by using magnetic 
stirring and a heating mantle. 

The catalyst was prepared within the reactor by dissolving sodium 
hydroxide in methanol under magnetic stirring. Then 500 g of African 

crude palm oil was added to the reactor containing the catalyst, the 
mixture was heated up to 58 °C, and the reaction was maintained for 
2 h. A methanol to oil molar ratio of 12:1 and a sodium hydroxide 
concentration of 2% w/w, based on the weight of the oil, were used. 

When the reaction was completed, the mixture was poured into 
a separator funnel and the biodiesel was washed with distilled water. 
During this process two immiscible phases were formed. The lower 
phase, consisting of glycerol and soap, was separated by gravity. 
The biodiesel washing process was repeated until no more soap was 
seen. The upper phase, consisting of methyl esters, was poured into 
a distillation flask and distilled at 100 °C to remove excess methanol 
and water. To remove trace contaminants, the biodiesel was refined 
through a glass column packed with 60 g of Amberlite Dry 10 ionic 
resin. Aliquots were taken for subsequent chemical analysis. 

Instrumentation

Chromatographic analysis
The biodiesel composition was determined by chromatographic 

analysis. A gas chromatograph model 6890 coupled to a mass detector 
model 5973N, Agilent, equipped with a chromatographic column HP 
5MS 5% diphenyl–95% dimethylsiloxane (25 m × 0.2 mm × 0.33 
μm) and ionization technique EI at 70 eV was used. Helium was used 
as the carrier gas at a flow of 1 mL min−1. The initial oven tempera-
ture was set at 40 °C for 1 min; the column temperature was set at 
250 °C, the linear increase in temperature was set at a rate of 5 °C 
min−1 up to 250 °C, and the temperature was maintained at 250 °C 
for 5 min. The injector and the detector were maintained at 250 °C 
and 280 °C, respectively. A volume of 500 μL of dichloromethane 
was added to 2 μL of the test sample, and 1 μL of this was injected 
into the chromatograph. The mass spectra and retention times were 
compared with the NIST data base (version 1.7a) to identify all the 
components of biodiesel and their concentrations. The analysis in-
dicated that biodiesel from palm oil had more than 99.5 wt% purity 
of methyl esters.

FTIR–ATR analysis
The samples were analyzed with a Fourier transform infrared 

spectrophotometer Agilent Cary 680, equipped with a diamond 
tipped ATR accessory. All spectra were acquired at 25 ± 1 °C and 16 
scans with a spectral resolution of 2 cm−1 per analyzed sample were 
performed. The analysis region ranged from 551 cm−1 to 4000 cm−1. 
The cell was cleaned three times with acetone after each spectrum 
was acquired. 

Software

For the principal components analysis and the development of 
the prediction model, the numerical data from the acquired spectra 
were exported into Microsoft Excel 2010 and subsequently exported 
again into the Piruette V.4.5 of Infometrix software. All absorbance 
data between 551 cm−1 and 650 cm−1 were removed because of noise 
in the spectra, which caused these spectra to be not useful for model 
construction.

Sample preparation

To perform the principal components analysis (PCA), 142 sam-
ples were prepared using a balance (OHAUS±0.001 g), at a constant 
temperature of 25 °C. The 142 analyzed samples were in three diffe-
rent classes. The first class, containing 27 samples, was obtained from 
the mixture of petrodiesel with crude palm oil at different ratios. The 
petrodiesel concentration ranges from 0 wt% to 100 wt% whereas 
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the African crude palm oil concentration ranges from 0 wt% to 19.5 
wt%. The second class, containing 83 blends, was obtained from 
the mixture of petrodiesel, biodiesel and African crude palm oil at 
different ratios. The petrodiesel concentration was in the interval from 
0 wt% to 100 wt%; the biodiesel concentration varied from 0 wt% 
to 95 wt% and the oil one from 0 wt% to 19.5 wt%. The third class, 
containing 32 samples, was obtained from the mixture of petrodiesel 
with biodiesel; additionally, this last group was not adulterated with 
oil. The petrodiesel and biodiesel concentrations ranged from 0 wt% 
to 100 wt% and 0 wt% to 95 wt%, respectively. 

Chemometric analysis

The infrared spectral data from the analysis of the 142 samples 
were used to perform the principal components analysis (PCA). The 
data from each sample contain 1738 variables; a total of 246,796 varia-
bles were analyzed. The PCA was constructed using several technical 
preprocessing methods on the spectra: a central mean, normalization, 
and multiple transformations to obtain a 95% confidence interval.

To determine the adulteration of petrodiesel/biodiesel blends with 
palm oil, the prediction model was built using PLS regression, and the 
infrared spectral data from the analysis of 83 samples of the second 
class were used. A total of 76 samples were used for the calibration 
model and seven for the external validation. 

The spectral data were statistically and mathematically treated as 
a central mean and ten components were used for the construction of 
the calibration model. The model was validated by cross-validation 
using “leave one out”, and a set of seven samples prepared in the 
laboratory and not used for the construction of the calibration model 
were used for the external validation. 

To determine the predictive capacity of the model the following 
statistical parameters were calculated: the optimum number of latent 
variables; the standard error of calibration (SEC); the standard error of 
validation (SEV); the similarity criterion by means of the (SEC/SEV) 
ratio; the coefficient correlation of calibration (r Cal), which determi-
nes the degree of correlation between the observed oil concentration 
and that predicted by the calibration model; the coefficient correlation 
of validation (r Val), which determines the correlation between the 
real oil concentration and that predicted by the validation model; 
the paired data Student’s t-test; and the systematic error (bias).31,32

RESULTS AND DISCUSSION 

Classification of petrodiesel-palm oil/petrodiesel-palm 
biodiesel-palm oil/petrodiesel-palm biodiesel blends using PCA

The PCA analysis is possible because the infrared spectra from 
petrodiesel, palm biodiesel, and African crude palm oil show di-
fferent absorbance regions (Figure 1). The palm biodiesel and the 
African crude palm oil have multiple absorption bands not present 
in the petrodiesel. The bands near 1200 cm−1 are assigned to the 
axial asymmetric stretching vibrations of the bonds pertaining to the 
CC(=O)-O functional group; those bands near 1168 cm−1 correspond 
to the axial asymmetric stretching vibrations of bonds characteristic to 
the O-C-C ester group. The region between 900 cm−1 and 1300 cm−1 
is better known as the fingerprint region; it is made up of overlapping 
bands that correspond to multiple vibrational movements attributed 
to different types of bonds and functional groups of palm biodiesel 
and palm oil. The region between 1700 cm−1 and 1800 cm−1 presents 
a strong absorption band corresponding to stretching vibrations of 
the carbonyl (C=O) functional group; the esters from the oil have a 
maximum absorbance at 1742 cm−1, whereas those from biodiesel 
are at 1745 cm−1.

The third region is in the interval from 2800 cm−1 to 3020 cm−1. 
The absorption band located at 3010 cm−1 corresponds to stretching 
motions of the double bond (C=C) in cis position of unsaturated es-
ters in biodiesel and crude palm oil. The peaks with high absorption 
intensities between 2800 cm−1 and 2995 cm−1 are assigned to sym-
metric and asymmetric stretching vibrations of the methylene group.

The PCA analysis reveals the differences between the petrodiesel, 
palm biodiesel, and palm oil spectra. The scores from the three-
-dimensional plot divide the samples into three groups, as shown in 
Figure 2. The first component (PC1) was the major contributor to the 
separation of all samples; therefore the scores were distributed all 
along PC1, explaining 86.2% of the total variability. The second and 
third components explained 9% and 2.3% of the variability, respec-
tively. The three components correspond to 1490 original variables. 
The sum of the three PCs explains 97.5% of the total variance and 
2.5% corresponds to the cumulative residual variance or unexplai-
ned cumulative variance. The contributions of PC2 and PC3 for the 
separation of petrodiesel/palm oil and petrodiesel/biodiesel/palm oil 
blends were of a lesser degree than that of PC1. However, their con-
tributions were equally important for the separation of unadulterated 
petrodiesel/biodiesel blends. 

In Figure 2, the first class, located in the upper part, corresponds 
to the 27 petrodiesel/palm oil blends (green points). The variables 
described in the loading graph are located in the same quadrant of 
a sample group within the scores graph and they are also the most 
important ones in describing a particular sample group. Thus, the 
loading graph indicates that the petrodiesel samples have high 
palm oil content, related to several variables. This is caused by the 

Figure 2. Principal component analysis: the spectral data shows the formation 
of three groups corresponding to each class of fuel blends

Figure 1. FTIR spectra of (a) petrodiesel, (b) palm oil and (c) palm biodiesel
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spectral data of petrodiesel and palm oil showing greater differences 
(Figure 1). These differences in the infrared spectra made it possible 
to determine the palm oil content in petrodiesel blends (Figure 3).

The second class, located in the middle part of Figure 2, corre-
sponds to the petrodiesel/palm biodiesel/palm oil blends (red points). 
The palm biodiesel and the African crude palm oil have different 
absorption bands (Figure 1). The peak between 1075 cm−1 and 1100 
cm−1 corresponds to asymmetric axial stretching of O-CH2-C and 
the absorption band 1370–1400 cm−1 corresponds to the functional 
group O-CH2 in the glycerol moiety of triglyceride, diglyceride, and 
monoglyceride in the palm oil, which are not present in the biodiesel 
and petrodiesel spectra. The palm biodiesel spectrum presents bands 
between 1425 cm−1 and 1450 cm−1, which correspond to the asymmet-
ric bending of CH3, whereas the bands between 1180 cm−1 and 1200 
cm−1 correspond to asymmetric axial stretching of O-CH3, which are 
not present in the petrodiesel and palm oil spectra. These differences 
in the infrared spectra made it possible to determinate the palm oil 
content in petrodiesel blends (Figure 4).

The third class, located at the bottom of Figure 2, corresponds to 
the petrodiesel/biodiesel samples that have not been adulterated with 
palm oil (blue points). As can be observed from Figure 1, there is a 
large difference in the peak arrangement of petrodiesel and biodiesel. 
There are regions, such as 1700–1800 cm−1 corresponding to the C=O 
bond and the fingerprint region of biodiesel (1000–1300 cm−1), that are 
not present in the petrodiesel spectrum. Figure 5 shows the variation 
in these absorption bands as a function of the biodiesel content in 

petrodiesel blends. This demonstrates that the segregation between 
samples was very efficient and confirms that the FTIR data contain 
enough information to determine the adulteration of petrodiesel and 
petrodiesel/biodiesel blends with palm oil.

Construction of the PLS model regression to quantify the 
concentration of African palm oil in petrodiesel/palm biodiesel 
blends 

To quantify the amount of raw palm oil added to the petrodie-
sel/palm biodiesel blends, multivariable calibration models were 
constructed using the full FTIR spectrum (650–4000 cm−1) from 
83 petrodiesel/palm biodiesel/palm oil blends that belong to the 
second classes. The statistical parameters values used to evaluate 
the prediction model are shown in Table 1; six principal components 
(PCs) explained 98.305% of the total variance. The values of coe-
fficient correlation of calibration (r Cal) and coefficient correlation 
of validation (r Val) calculated with six PCs were 0.987 and 0.95, 
respectively; these values, close to one, indicate that there is a high 
correlation between the real concentration values of palm oil and the 
predicted oil concentrations. These values should be greater than 0.9, 
which is in agreement with previous studies carried out by Ferrão.33 

The low values obtained for the standard error of calibration 
(SEC) and the standard error of validation (SEV), 0.627 and 1.695, 
respectively, for six PCs, show that the model has a good capacity 

Figure 4. FTIR spectra of 83 petrodiesel/palm biodiesel/palm oil blends

Figure 3. FTIR spectra of 27 petrodiesel/palm oil blends

Table 1. Statistical parameters values used to evaluate the predictive capacity 
of the model PLS

Variance
Explained 
Variance, 

% 
SEV r Val SEC r Cal

Factor 1 1.356 47.980 4.421 0.6505 4.253 0.6941

Factor 2 1.149 32.406 2.881 0.8686 2.603 0.8995

Factor 3 0.189 8.895 2.529 0.9005 1.946 0.9461

Factor 4 0.168 5.280 2.022 0.9382 1.251 0.9784

Factor 5 0.073 2.049 1.817 0.9503 0.956 0.9876

Factor 6 0.060 1.695 1.695 0.9566 0.627 0.9948

Factor 7 0.032 0.904 1.697 0.9566 0.404 0.9978

Factor 8 0.031 0.881 1.698 0.9564 0.287 0.9989

Factor 9 0.032 0.901 1.739 0.9543 0.176 0.9996

Factor 10 0.041 1.164 1.741 0.9543 0.119 0.9998

Figure 5. FTIR spectra 32 petrodiesel/palm biodiesel blends
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to predict palm oil concentration in petrodiesel/biodiesel blends. 
This is confirmed by the similarity criterion (SEC/SEV), in which 
the 0.5263 value shows a good fit of the model, as this value is in 
the interval between 0.5 and 1, which is the same criterion used by 
Ferrão in prior studies.34

The slope and intercept in the regression line are close to one and 
to zero, respectively (Figure 6); this indicates a low systematic error in 
the regression. This is also confirmed by the low value (0.076) obtai-
ned for bias. These results are in agreement with previous studies.7,35

The oil concentrations predicted by the PLS model were compa-
red with the real oil concentrations by means of a paired data Student’s 
t-test. The t (tcal) values were compared with tabulated values (ttab) for 
75 degrees of freedom and a 95% confidence value. The calculated tcal 

value was 0.0013, while the tabulated ttab value was 1.670; therefore, 
ttab > tcal. From this, we can conclude with 95% certainty that the 
predicted palm oil concentrations are not statistically different from 
the real palm oil concentrations. This confirms that the constructed 
prediction model using PLS/FTIR–ATR provides similar results to 
real values and that it can be used to predict palm oil concentrations 
in petrodiesel/biodiesel blends.

CONCLUSIONS

The spectral fingerprints generated by FTIR-ATR and explained 
through the chemometric techniques of PCA are sufficient infor-
mation to differentiate petrodiesel and petrodiesel/palm biodiesel 
samples containing African crude palm oil. 

The PLS model based on FTIR spectra developed in this work 
proved to be suitable as a practical analytical method of predicting the 
African crude palm oil content in petrodiesel/palm biodiesel blends 
from 0 wt% to 19.5 wt%. The advantages of this method are its ease 
of application; i.e., it does not require any pretreatment of the samples 
or the use of standards, and that it is not a destructive method, thus 
making it environmentally friendly. It is also a fast and inexpensive 
technique, unlike chromatography techniques.

 Our proposed method can be used in quality control systems to 
differentiate pure biodiesel from diesel/biodiesel blends or adultera-
ted biodiesel with palm oil. In addition, it enables estimation of the 
degree of adulteration. 
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