MATERIAL SUPLEMENTAR

Determinação da autenticidade de amostras de azeite comerciais apreendidas no estado do Espírito Santo usando um espectrofotômetro portátil na região do NIR

Priscilla C. Santos\(^a\), Flavia Tosato\(^b\), Mirelly Cesconetto\(^a\), Thayná Corrêa\(^a\), Francine D. Santos\(^b\), Valdemar Lacerda Jr.\(^b\), André A. Pires\(^b\), Araceli V. F. N. Ribeiro\(^b\), Paulo R. Filgueiras\(^b\,#) e Wanderson Romão\(^a,b,c,*\)

\(^a\)Instituto Federal do Espírito Santo, 29106-010 Vila Velha – ES, Brasil
\(^b\)Departamento de Química, Universidade Federal do Espírito Santo, 29075-910 Vitória – ES, Brasil
\(^c\)Instituto Nacional de Ciência e Tecnologia Forense (INCT) Vitória – ES, Brasil

*e-mail: wandersonromao@gmail.com

#e-mail alternativo: filgueiras.pr@gmail.com
Tabela 1S. Valores experimentais para as análises de acidez realizadas nas amostras apreendidas

<table>
<thead>
<tr>
<th>COD</th>
<th>Acidez (% ácido oleico)</th>
<th>COD</th>
<th>Acidez (% ácido oleico)</th>
<th>COD</th>
<th>Acidez (% ácido oleico)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0,193501723</td>
<td>B7</td>
<td>0,205525</td>
<td>C4</td>
<td>0,169</td>
</tr>
<tr>
<td>A2</td>
<td>0,166848517</td>
<td>B8</td>
<td>0,21332</td>
<td>C5</td>
<td>0,357</td>
</tr>
<tr>
<td>A3</td>
<td>0,241352675</td>
<td>B9</td>
<td>0,252906</td>
<td>D1</td>
<td>0,194</td>
</tr>
<tr>
<td>A4</td>
<td>0,139585545</td>
<td>B10</td>
<td>0,209601</td>
<td>D2</td>
<td>0,280</td>
</tr>
<tr>
<td>A5</td>
<td>0,203428229</td>
<td>B11</td>
<td>0,217515</td>
<td>D3</td>
<td>0,206</td>
</tr>
<tr>
<td>A6</td>
<td>0,162155407</td>
<td>B12</td>
<td>0,197251</td>
<td>D4</td>
<td>0,248</td>
</tr>
<tr>
<td>A7</td>
<td>0,207331135</td>
<td>B13</td>
<td>0,257355</td>
<td>D5</td>
<td>0,238</td>
</tr>
<tr>
<td>A8</td>
<td>0,157382648</td>
<td>B14</td>
<td>0,219405</td>
<td>D6</td>
<td>0,162</td>
</tr>
<tr>
<td>A9</td>
<td>0,157863184</td>
<td>B15</td>
<td>0,257432</td>
<td>E1</td>
<td>0,167</td>
</tr>
<tr>
<td>A10</td>
<td>0,13942953</td>
<td>B16</td>
<td>0,323532</td>
<td>E2</td>
<td>0,217</td>
</tr>
<tr>
<td>A11</td>
<td>0,16466056</td>
<td>B17</td>
<td>0,295609</td>
<td>E3</td>
<td>0,187</td>
</tr>
<tr>
<td>A12</td>
<td>0,206045633</td>
<td>B18</td>
<td>0,217071</td>
<td>E4</td>
<td>0,149</td>
</tr>
<tr>
<td>A13</td>
<td>0,216659351</td>
<td>B19</td>
<td>0,225593</td>
<td>E5</td>
<td>0,144</td>
</tr>
<tr>
<td>A14</td>
<td>0,148598608</td>
<td>B20</td>
<td>0,170912</td>
<td>E6</td>
<td>0,203</td>
</tr>
<tr>
<td>B1</td>
<td>0,167200387</td>
<td>B21</td>
<td>0,312964</td>
<td>E7</td>
<td>0,217</td>
</tr>
<tr>
<td>B2</td>
<td>0,194254234</td>
<td>B22</td>
<td>0,351228</td>
<td>E8</td>
<td>0,180</td>
</tr>
<tr>
<td>B3</td>
<td>0,135123693</td>
<td>B23</td>
<td>0,211434</td>
<td>E9</td>
<td>0,253</td>
</tr>
<tr>
<td>B4</td>
<td>0,175681468</td>
<td>C1</td>
<td>0,212</td>
<td>E10</td>
<td>0,161</td>
</tr>
<tr>
<td>B5</td>
<td>0,157861096</td>
<td>C2</td>
<td>0,176</td>
<td>E11</td>
<td>0,243</td>
</tr>
<tr>
<td>B6</td>
<td>0,252742282</td>
<td>C3</td>
<td>0,289</td>
<td>E12</td>
<td>0,211</td>
</tr>
</tbody>
</table>
Tabela 2S

Valores experimentais para as análises de peróxido realizadas nas amostras apreendidas

<table>
<thead>
<tr>
<th>COD</th>
<th>Índice de peróxido (meq/kg)</th>
<th>COD</th>
<th>Índice de peróxido (meq/kg)</th>
<th>COD</th>
<th>Índice de peróxido (meq/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>6,849162</td>
<td>B7</td>
<td>3,366045</td>
<td>C4</td>
<td>10,34878</td>
</tr>
<tr>
<td>A2</td>
<td>1,443203</td>
<td>B8</td>
<td>7,214864</td>
<td>C5</td>
<td>4,923035</td>
</tr>
<tr>
<td>A3</td>
<td>11,63078</td>
<td>B9</td>
<td>2,525683</td>
<td>D1</td>
<td>6,471991</td>
</tr>
<tr>
<td>A4</td>
<td>6,483802</td>
<td>B10</td>
<td>6,93727</td>
<td>D2</td>
<td>7,563202</td>
</tr>
<tr>
<td>A5</td>
<td>2,161711</td>
<td>B11</td>
<td>4,429815</td>
<td>D3</td>
<td>5,767086</td>
</tr>
<tr>
<td>A6</td>
<td>4,665086</td>
<td>B12</td>
<td>3,938744</td>
<td>D4</td>
<td>3,94128</td>
</tr>
<tr>
<td>A7</td>
<td>9,499481</td>
<td>B13</td>
<td>3,119196</td>
<td>D5</td>
<td>3,249866</td>
</tr>
<tr>
<td>A8</td>
<td>5,414175</td>
<td>B14</td>
<td>8,300435</td>
<td>D6</td>
<td>10,43964</td>
</tr>
<tr>
<td>A9</td>
<td>5,157711</td>
<td>B15</td>
<td>2,885288</td>
<td>E1</td>
<td>3,478924</td>
</tr>
<tr>
<td>A10</td>
<td>5,124391</td>
<td>B16</td>
<td>5,266166</td>
<td>E2</td>
<td>5,178567</td>
</tr>
<tr>
<td>A11</td>
<td>5,158368</td>
<td>B17</td>
<td>5,039131</td>
<td>E3</td>
<td>3,930094</td>
</tr>
<tr>
<td>A12</td>
<td>3,003893</td>
<td>B18</td>
<td>2,160231</td>
<td>E4</td>
<td>3,961914</td>
</tr>
<tr>
<td>A13</td>
<td>3,59289</td>
<td>B19</td>
<td>3,600224</td>
<td>E5</td>
<td>3,125847</td>
</tr>
<tr>
<td>A14</td>
<td>4,198078</td>
<td>B20</td>
<td>13,32515</td>
<td>E6</td>
<td>9,023683</td>
</tr>
<tr>
<td>B1</td>
<td>4,676785</td>
<td>B21</td>
<td>4,554953</td>
<td>E7</td>
<td>6,840021</td>
</tr>
<tr>
<td>B2</td>
<td>9,723436</td>
<td>B22</td>
<td>8,359606</td>
<td>E8</td>
<td>3,704838</td>
</tr>
<tr>
<td>B3</td>
<td>5,279216</td>
<td>B23</td>
<td>2,748518</td>
<td>E9</td>
<td>8,496981</td>
</tr>
<tr>
<td>B4</td>
<td>4,091146</td>
<td>C1</td>
<td>7,283187</td>
<td>E10</td>
<td>4,54262</td>
</tr>
<tr>
<td>B5</td>
<td>3,246893</td>
<td>C2</td>
<td>4,910878</td>
<td>E11</td>
<td>8,163795</td>
</tr>
<tr>
<td>B6</td>
<td>4,635069</td>
<td>C3</td>
<td>4,670091</td>
<td>E12</td>
<td>4,92409</td>
</tr>
</tbody>
</table>
Tabela 3S. Valores experimentais da absorbância no ultravioleta realizadas nas amostras apreendidas

| COD | k270 | k232 | k274 | k266 | ΔK | COD | k270 | k232 | k274 | k266 | ΔK |
|-----|------|------|------|------|----|-----|------|------|------|------|------|----|
| A1 | 2,268| 2,736| 1,115| 2,09561| 0,66208 | B17 | 1,512| 2,646| 1,71 | 1,86001 | -0,27347 |
| A2 | 0,83 | 2,681| 0,842| 0,90221 | -0,04248 | B18 | 1,573| 2,757| 1,386| 1,36759 | 0,19651 |
| A3 | 2,649| 2,774| 2,418| 2,42062 | 0,22986 | B19 | 0,441| 2,14 | 1,134| 1,21311 | -0,73193 |
| A4 | 1,738| 2,6 | 1,966| 2,06938 | -0,27965 | B20 | 2,278| 2,599| 2,228| 2,37219 | -0,02179 |
| A5 | 0,883| 2,652| 0,817| 0,97886 | -0,015 | B21 | 1,764| 2,589| 1,693| 1,83009 | 0,00299 |
| A6 | 1,348| 2,654| 2,241| 2,26619 | -0,90556 | B22 | 1,627| 2,705| 1,634| 1,87675 | -0,12875 |
| A7 | 2,072| 2,704| 2,118| 2,15408 | -0,06414 | B23 | 1,878| 2,641| 2,155| 2,19703 | -0,29811 |
| A8 | 1,151| 2,637| 1,338| 1,47087 | -0,25346 | C1 | 2,411| 2,604| 2,218| 2,39286 | 0,10619 |
| A9 | 0,613| 1,867| 1,687| 2,41991 | -1,4402 | C2 | 1,931| 2,82 | 2,271| 2,46508 | -0,43718 |
| A10 | 1,968| 2,625| 2,009| 2,01001 | -0,04198 | C3 | 0,987| 2,528| 1,432| 1,5481 | -0,5033 |
| A11 | 2,181| 2,729| 1,855| 1,87853 | 0,3138 | C4 | 2,095| 2,698| 2,255| 2,33185 | -0,19989 |
| A12 | 1,075| 2,726| 0,893| 1,01651 | 0,11978 | C5 | 0,869| 2,554| 0,845| 0,95986 | -0,0334 |
| A13 | 2,636| 2,757| 2,403| 2,45203 | 0,20819 | D1 | 1,434| 2,676| 1,155| 1,13706 | 0,28779 |
| A14 | 0,396| 2,335| 2,252| 2,32689 | -1,89399 | D2 | 1,262| 2,219| 1,13 | 1,26447 | 0,06513 |
| B1 | 1,704| 2,677| 1,521| 1,50755 | 0,18952 | D3 | 0,908| 2,603| 1,355| 1,55916 | -0,54951 |
| B2 | 1,939| 2,727| 1,922| 1,88159 | 0,03765 | D4 | 1,063| 2,546| 1,369| 1,53384 | -0,38882 |
| B3 | 1,876| 2,626| 1,833| 1,89729 | 0,01084 | D5 | 1,923| 2,706| 1,373| 1,5093 | 0,4822 |
| B4 | 2,176| 2,715| 2,054| 2,01764 | 0,14052 | D6 | 1,04 | 2,071| 1,2 | 1,29524 | -0,20801 |
| B5 | 2,091| 2,698| 1,916| 2,08928 | 0,08787 | E1 | 1,413| 2,546| 2,425| 2,51415 | -1,05668 |
| B6 | 0,945| 2,559| 0,952| 1,02615 | -0,04343 | E2 | 1,612| 2,743| 2,384| 2,54849 | -0,85415 |
| B7 | 1,268| 2,666| 1,187| 1,2773 | 0,03608 | E3 | 1,323| 2,747| 2,368| 2,46075 | -1,0909 |
| B8 | 1,48 | 2,627| 1,721| 2,18104 | -0,47131 | E4 | 2,539| 2,748| 2,349| 2,47167 | 0,12852 |
| B9 | 1,056| 2,572| 1,701| 1,92606 | -0,75727 | E5 | 1,966| 2,539| 2,327| 2,36932 | -0,3823 |
| B10 | 0,64 | 2,596| 1,677| 1,83872 | -1,14038 | E6 | 2,474| 2,648| 2,276| 2,36547 | 0,15317 |
| B11 | 0,532| 2,544| 1,441| 1,5579 | -0,96787 | E7 | 1,242| 2,581| 1,721| 1,91736 | -0,57709 |
| B12 | 1,016| 2,339| 1,116| 1,54002 | -0,31173 | E8 | 2,347| 2,622| 2,349| 2,41796 | -0,03647 |
| B13 | 1,586| 2,667| 1,565| 1,75818 | -0,08914 | E9 | 1,714| 2,676| 2,294| 2,44237 | -0,65376 |
| B14 | 0,995| 2,728| 2,286| 2,31128 | -1,30311 | E10 | 2,056| 2,629| 2,331| 2,44715 | -0,33291 |
| B15 | 1,106| 2,738| 1,929| 1,88903 | -0,80318 | E11 | 2,155| 2,508| 2,122| 2,35854 | -0,08522 |
| B16 | 1,469| 2,602| 1,39 | 1,95186 | -0,20252 | E12 | 1,344| 2,651| 1,721| 1,91912 | -0,47596 |

[CC BY] This is an open-access article distributed under the terms of the Creative Commons Attribution License.