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A irradiagdo de 1-hidroxi-1,3-difenil-2-indanona leva a formacdo de dois intermedidrios
atribuidos aos endis (E,E e Z,E). O enol Z,E tem vida curta e seu possivel modo de decaimento
resulta na formagao de produtos, dentre os quais a orto-benzilbenzofenona € o principal. O enol
E,E tem maior estabilidade e apresenta um tempo de vida > 100nms em metanol. Seu decaimento
resulta na formacdo de uma mistura complexa de produtos, onde 10-fenillantrona e
10-hidroxi-10-fenilantrona sdo os principais. A fotdlise por pulso de laser da
1-hidroxi-1,3,3-trifenil-2-indanona mostra a formagao de dois possiveis fotoendis Z (t = 180
ns) e E (t =30 n). O modo de decaimento destes endis € a formagado de produtos, resultando
numa mistura complexa.

Irradiation of 1-hydroxy-1,3-diphenyl-2-indanone (1) leads to the formation of two inter-
mediates assigned to the enols (E,E and Z,E). The Z,E-enol is short lived, and its possible decay
mode involves product formation from which ortho-benzylbenzophenone is the main product.
The longer lived E,E-enol shows a lifetime of > 100 s in methanol, and its decay results in the
formation of a complex mixture of products, with 10-phenylanthrone and
10-hydroxy-10-phenylanthrone being the main ones. Laser flash photolysis of
1-hydroxy-1,3,3-triphenyl-2-indanone (2) shows the formation of the two possible photoenols
Z (t =180ns) and E (t =30 n¥). The decay mode for these enols is product formation, resulting
in a complex mixture of products.
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Introduction

The photochemical decomposition of 2-indanones has
been used extensively as a source of ortho-xylylenes. This
reaction involves the indanone triplet excited state and pro-
ceeds through a biradical formed by a-cleavage from this
ketone. After loss of carbon monoxide, a second biradical
is formed, which is in fact the xylylene triplet excited state.
Decay of this biradical results in ortho-xylylene formation,
which ultimately gives products through either an intra- or
an intermolecular pathway (see Scheme 1)'.

Photoenols can be regarded as hydroxy substituted ort-
ho-xylylenes. They are usually formed upon photolysis of

aromatic ketones containing ortho-alkyl groups. Thus, ke-
tone excitation leads to a mixture of triplet excited states
(due to the existence of different ground state conformers
for the ketone) which then decay to a rotationally equilibra-
ted 1,4-biradical. This biradical leads to the formation of a
mixture of enols. Each component of this “enol mixture”
shows very similar spectroscopic characteristics, but quite
different kinetic behavior®*. Alternatively, photoenols can
also be formed via the thermal opening of substituted ben-
zocyclobutenols®.

In this paper, we show that the photolysis of hydroxy
substituted 2-indanones is a very convenient route to the
generation of enols. To show this we have undertaken a de-
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Scheme 1.

tailed study of the dynamics of enol formation from
2-indanones having a different substitution pattern, namely
1-hydroxy-1,3-diphenyl-2-indanone (1) and
1-hydroxy-1,3,3-triphenyl-2-indanone (2).
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Experimental
Materials

The solvents employed were Spectrograde or Gold La-
bel, and were used as received. 1,3-Cyclohexadiene
(Aldrich) was bulb-to-bulb distilled just before use. Sodi-
um azide (Aldrich) was used as received.

1-Hydroxy-1,3-diphenyl-2-indanone (1) was synthesi-
zed in a four-step reaction. The first step involved the for-
mation of 3-phenyl-1-indanone through a Friedel-Crafts
reaction between cinnamic acid and benzene®. Treatment
of this indanone with butylnitrite in acidic ethanol led to
2-isonitroso-3-phenyl-1-indanone’, which was then
hydrolyzed to 1,2-diketo-3-phenylindane by pyruvic acid
in an acetic acid/water mixture containing hydrochloric
acid. This diketone was then treated with phenylmagnesi-
um bromide, giving 1. Recrystallization from ethanol yiel-
ded colorless needles showing m p = 194-198 @176C
(m.p.”=195-200°C). Spectral data agree well with the pro-
posed structure for 1.

"H-NMR (200 MHz, CDCI3): d (ppm) 7.00-7.76 (aro-
matic protons, 4H, m); 4.93 (CH, 1H, s); 3.08 (OH, 1H, s).

I3C-NMR (50.3 MHz, CDCI3): d (ppm) 216.816
(C=0).

1-Hydroxy-1,3,3-triphenyl-2-indanone (2) was also
synthesized in a four-step reaction®. A Friedel-Crafts reac-
tion between 2,3-diphenyl-1-indanone and benzene gave
2,3,3-triphenyl-1-indanone, which in turn reacted with
benzoyl chloride in chloroform/acetic acid, forming
1,1,2-triphenylbenzoyloxyindene. This benzoate was oxi-
dized to 1,1,2-triphenyl-3-benzoyloxy-2,3-epoxy-indane
by chromic anhydride in pyridine. Hydrolysis of the epoxy
derivative by sodium methoxide in methanol resulted in the
formation of 2. Recrystallization from benzene-hexane yi-
elded colorless needles showing m.p. = 158-159 °C
(m.p.2=157-159°C). Spectral data agree with the proposed
structure for 2.

"H-NMR (200 MHz, CDCI3): d (ppm) 6.85-7.70 (aro-
matic protons, 4H, m); 3.40 (OH, 1H, s).

I3C.NMR (50.3 MHz, CDCI3): d (ppm) 214.921
(C=0).

General Techniques

UV-visible spectra were recorded with a Hew-
lett-Packard 8451A diode array spectrometer.

GC-analyses were carried out on a Perkin-Elmer model
8320 capillary gas chromatograph employing a 12m J&W
bonded phase vitreous silica BP1 silicone column. GC-MS
analyses were performed on a Hewlett-Packard model
5995 system.

'H- and 3C-NMR spectra were recorded in a Bruker
AC 200 spectrometer.

Melting points were determined in a Mel-Temp appara-
tus and were not corrected.

Product Studies

Typical samples were 1 mL containing 0.03 M of 1 in
benzene or trifluoroethanol. The samples were contained
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in Pyrex tubes and deaerated by bubbling oxygen-free ni-
trogen. The irradiations were done in a “merry-go-round”
apparatus with 9 RPR-3000 lamps. The products were
analyzed by GC and GC-MS. The products were not isola-
ted, their identification being based on their mass spectra.
An authentic sample of the main product, 3, was available
for comparison.

Laser flash photolysis

Samples (»1 mM) were contained ina 7 x 7 mm? cell
made of Suprasil quartz tubing, and were deaerated by bub-
bling oxygen-free nitrogen. The samples were irradiated
with pulses (308 nm, »5 ns, < 20 mJ/pulse) from a Lumo-
nics TE860-2 excimer laser. Our detection system incorpo-
rated a monochromator-photomultiplier, and the signals
from the RCA-4840 photomultiplier were captured by a
Tektronix 2440 transient digitizer and transferred to a Ma-
cintosh Ilci computer which controlled the system and pro-
vided suitable storage and processing facilities through the
use of a home-developed program using the LabVIEW-2.2
software. The system was otherwise similar to that reported
elsewhere”'°.

Results

Product studies

Ketone 1 is quite stable upon irradiation in benzene.
However, long term irradiation (40 h) of 1 in trifluoroetha-
nol results in the formation of ortho-benzylbenzophenone
(3) as the main product. In addition, a complex mixture of
other products is formed, from which 10-phenyl-anthrone
(4) and 10-hydroxy-10-phenylanthrone (5) could be identi-
fied. Product 5 is probably formed through oxygen inserti-
on in 4. It is important to note that the relative yield of 3
compared to 4 and 5 is dependent on irradiation time. This
seems to indicate that these products are formed from furt-
her irradiation of 3 (Scheme 2). Independent studies of the
photochemistry of ortho-benzylbenzophenone (3) show
that 4 and 5 are the main products'!.

The hydroxyindanone 2 shows similar photochemical
behavior, being almost unreactive in benzene but forming
several products when the reaction is conducted in trifluo-
roethanol. The main product was identified as
9,9-diphenyl-10-hydroxy-9,10-dihydroanthracene (6) and
accounts for close to 50% of the total product formation.
Two minor products were identified as
9,10-diphenyl-9-hydroxy-9,10-dihydroanthracene (7) and
9,10-diphenylanthracene (8) (Scheme 3). Surprisingly, we
did not obtain any evidence for the formation of ortho-dip-
henylmethylbenzophenone.

Laser flash photolysis
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Laser flash photolysis of 1 in methanol led to a readily
detectable transient showing maximum absorption at 330
and 435 nm (Fig. 1). The decay monitored at 435 nm sho-
wed two components; a short-lived component with a life-
time of t =2 ¥, and a long-lived species with t = 100 s,
both insensitive to oxygen. Similar results were obtained in
trifluoroethanol, i.e., there was a short and a long-lived
component. This spectral and kinetic behavior is in agree-
ment with the data reported for other photoenols'>!* and
we therefore assigned structures 9 and 10 to these species,
corresponding to two of the possible photoenols derived
from 1, the Z,E-enol (9) and the E,E-enol (10), respecti-
vely. The same photoenols have been observed in the pho-
tochemistry of ortho-benzylbenzophenone (3)''.
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Figure 1. Transient absorption spectrum (recorded 1 s after the laser
pulse) obtained on 308 excitation of 1-hydroxy-1,3-diphenyl-2-indanone
(1) in methanol (»1 mM).

At 330 nm, in trifluoroethanol, we could observe a sig-
nal growing-in with the same kinetics as the decay for the
Z,E-enol. This growth was attributed to product formation,
i.e. ortho-benzylbenzophenone (3), which shows a signifi-
cant ground state absorption in this region.

1-Hydroxy-1,3,3-triphenyl-2-indanone (2) showed al-
most identical behavior to that of 1. Laser flash photolysis
of 2 in either methanol or trifluoroethanol gave a transient
with maximum absorption at 440 nm (Fig. 2) and an end ab-
sorption with | ;¢ at 320 nm. In trifluoroethanol, the decay
associated with the maximum at 440 nm showed two com-
ponents with lifetimes of 180 ns (300 ns in methanol) and

Ph OH
Z ™~ OH " ™~ Ph
- Ph «_ _Ph
Ph
11(2) 12 (E)

30 s ( 50 s in methanol), respectively, both insensitive to
oxygen. These two transients were assigned to both enols
derived from 2, the Z-enol (11) and the E-enol (12).
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Figure 2. Transient absorption spectrum (recorded 1 s after the laser
pulse) obtained on 308 excitation of 1-hydroxy-1,3,3-triphenyl-2-indanone
(2) in methanol (»1 mM).

Laser flash photolysis experiments in benzene with
both 1 and 2 did not lead to any transients that could be as-
signed to the corresponding enols.

Attempts to detect the biradical precursors to the enols
were inconclusive. In the case of 1, we detected a weak
transient (I ;4 = 330 nm) with a lifetime of »100 ns in tri-
fluoroethanol. This species was quenched by oxygen. Si-
milarly, in the case of 2, a transient with | max at 320 nm and

Ph Ph
*“OH *0OH
‘co e R
Ph” R
Ph
13-R=H 15-R=H
14-R=Ph 16-R=Ph

a lifetime of »40 ns was detected in methanol. Presumably
these intermediates are the biradicals leading to enol for-
mation, although it is not clear if these would be the inter-
mediates before (13-14) or after (15-16) decarbonylation.

In order to further confirm our assignment for the enols
derived from 1 and 2, we performed some quenching expe-
riments using bases to scavenge the long-lived photoe-
nols'* 10 and 12. Using sodium azide as a quencher in tri-
fluoroethanol, we measured the quenching rate constants
of 3x 10'M™' s"and 8 x 10°M™' 5! for 10 and 12, respecti-
vely.

Discussion

1-Hydroxy-2-indanones provide a method for the pre-
paration of the same photoenols that are normally produced
in the photochemistry of ortho-substituted benzophenones.
In the case of 1, where four different enols are possible,
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only two are observed (9 and 10). The other two (E,Z and
Z,7) are presumably too sterically hindered to be formed.
The Z E-enol 9 is shorter lived than 10, due to a symmetry
allowed 1,5-hydrogen shift leading to the formation of 3 as
the main product. These enols are the same as those produ-
ced in the photochemistry of ortho-benzylbenzophenone
(3!, and their involvement in the photochemistry of 3 was
unequivocally demonstrated by trapping experiments with
a series of dienophiles'. Further irradiation of 3 can give
the cyclization products 4 and 5, probably through a con-
certed intramolecular cycloaddition, with § being formed
via an oxygen insertion into the C(10)-H bond. These same
products can also be formed directly from the photoenol 10.

Interestingly, the photolysis of 3 in benzene leads to
enol detection, much as it does in polar solvents. In this
case, the E,E -enol has a lifetime of 470 ny!!. Therefore, if
this enol was formed from 1, it would be expected that it
would be readily detectable. The fact that no enols are de-
tected in the laser photolysis of 1 in benzene and that this
molecule is relatively photostable suggest that only “rever-
sible” photochemistry takes place. This reversibility can
only occur if the dominant pathway for biradical 13 is the
regeneration of 1, rather than the decarbonylation, ultima-
tely leading to benzophenones via the intermediacy of pho-
toenols.

In the case of 2, the two possible photoenols, Z, 11 and
E, 12, can be observed in laser flash experiments. Even
though a fast 1,5-hydrogen shift process can again be pos-
tulated to explain why the Zenol 11 is shorter lived than the
corresponding diphenylsubstituted one, i.e. 9 we were not
able to observe the formation of ortho-diphenylmethylben-
zophenone. This can be explained by assuming that this ke-
tone is an excellent chromophore at the irradiation
wavelength used and is extremely photolabile, leading to
its consumption during irradiation. On the other hand,
E-enol 12 leads to product formation, i.e. 6-8, probably by
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an intramolecular cycloaddition reaction occurring in a
concerted mode.

In conclusion, we were able to show that
1-hydroxy-2-indanones are quite efficient in forming sta-
ble photoenols, being an useful alternative method to the
formation of this class of intermediates.
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