Neolignan Aurein Rearrangement with Trifluoroacetic Acid

Javier R. Velandia^a, Mário G. de Carvalho^a and Raimundo Braz-Filho^b

^aDepartamento de Química, Universidade Federal Rural do Rio de Janeiro,
23851-970 Seropédica, Rio de Janeiro - RJ, Brazil

^bSetor de Química de Produtos Naturais - LTA-CCTA,
Universidade Estadual do Norte Fluminense, 28015-620 Campos - RJ, Brazil

Received: February 1, 1996

O tratamento da neolignana aureina com ácido trifluoroacético forneceu o produto de rearranjo 2-(2-alil-4-hidroxi-3,5-dimetoxifenil)-1-(3,4,5-trimetoxifenil)-propano previamente descrito na literatura e os seus derivados resultantes da adição de ácido trifluoracético e água à ligação dupla do grupo alila. Os produtos obtidos foram caracterizados com base em dados espectrais e a atribuição inequívoca dos deslocamentos químicos dos átomos de hidrogênio e carbono-13 foi realizada com base na análise de dados fornecidos por espectros uni- e bi-dimensional de RMN. Propostas mecanísticas justificam a formação dos produtos obtidos.

Treatment of the neolignan aurein with trifluoroacetic acid furnished the rearranged product 2-(2-allyl-4-hydroxy-3,5-dimethoxyphenyl)-1-(3,4,5-trimethoxy-phenyl)-propane, previously described in the literature, as well as its derivatives produced by the addition of trifluoroacetic acid and water to the carbon-carbon double bond of the allyl group. The products were characterized on the basis of spectral data, and the complete ¹H and ¹³C chemical shift assignments have been established by one-dimensional (1D) and homonuclear and heteronuclear 2D shift-correlated NMR methods. Mechanisms are proposed to justify the products obtained.

Keywords: Aurein rearrangement; ¹H and ¹³C-NMR spectral data

Introduction

Aurein (1), a neolignan isolated from *Licaria* species, was transformed into 2 by acid (H₂SO₄ + HOAc) treatment¹. On the basis of this result, a sample of 1 was used to investigate its reactivity with trifluoroacetic acid. A mixture was obtained containing 2, 3, and 4 as the major products. The characterization of these rearranged products was based on the spectral data, mainly ¹H (200 MHz) and ¹³C (50 MHz) NMR data, including 2D NMR experiments ¹Hx¹H-COSY and ¹Hx¹³C-COSY-ⁿJ_{CH} (n = 1; n = 2 and 3, COLOC), and NOE difference spectra (¹H {¹H}-NOE)², which also allowed the complete ¹H and ¹³C chemical shift assignments. The analysis of the ¹H and ¹³C-NMR spectra involved data obtained from mixtures and pure products.

Results and Discussions

Treatment of the neolignan aurein (1) with trifluoroacetic acid furnished the rearranged product (2), de-

scribed in the literature¹, its derivative produced by the addition of trifluoroacetic acid (3, a mixture of epimers at C-8'), and water (4, a mixture of epimers at C-8') to the carbon-carbon double bond of the allyl group. Thin layer chromatography (TLC) revealed a mixture containing 2, 3 and 4 as the major products. The presence of these rearranged products in this mixture was confirmed by ¹H (200 MHz) and 13 C (50 MHz) NMR: i) the signals at $\delta_{\rm H}$ 6.23 (s, 2H-2,6), 6.22 (s, 2H-2,6) and 6.16 (s, 2H-2,6), together with the δ_C 106.14 (d, 2C-2,6+2C-2,6) and 106.01 (d, 2C-2,6), allowed the recognition of the unchanged 3,4,5trimethoxyphenyl moiety; ii) the signals at δ_H 6.61 (s, H-6'), 6.57 (s, H-6') and 6.56 (s, H-6'), together with the δ_{C} 104.62 (d,C-6') and 104.14 (d, C-6'+C-6'), were consistent with the presence of a 4'-hydroxy-3,5methoxyphenyl unit with an additional substitution at C-2' [allyl (2), 2-trifluoroacetate-n-propyl (3) and 2-hydroxy-npropyl (4)]; iii) the signals at $\delta_{\rm H}$ 6.1-5.8 (m, H-8'), 5.2-4.8

(m, 2H-9') and 2.9-2.7 (m, 2H-7'), and δ_C 138.05 (d, C-8'), 114.63 (t, C-9') and 29.30 (t, C-7') were attributed to an allyl group; iv) the signals at δ_H 5.2-4.8 [m, H-8', superposed on the signals of the 2H-9' which was revealed by homonuclear (${}^1Hx^1H$ -COSY) and heteronuclear (${}^1Hx^1^3C$ -COSY- ${}^1J_{CH}$) 2D shift-correlated NMR spectra], 2.80 and 2.65 (m, 2H-7', assigned by ${}^1Hx^1H$ -COSY), and 1.25 and 1.10 (d, each, 3H-9', deduced by ${}^1Hx^1H$ -COSY and

 1 Hx 13 C-COSY spectra, consistent with the presence of two epimers at C-8', as anticipated), along with the signals at $\delta_{\rm C}$ 80.85 (d, C-8'), 30.76 (t, C-7') and 18.56 (q, C-9'), were used to characterize the 2-trifluoroacetate-*n*-propyl substituent; v) an analogous procedure described above (iv) was also used in the 1 H and 13 C chemical shift assignments of the 2-hydroxy-*n*-propyl moiety [$\delta_{\rm H}$ 3.70 (m, H-8'), 3.30 (m, 2H-7'), 1.41 (d, J = 6.2 Hz, 3H-9') and $\delta_{\rm C}$ 69.34 (d, C-8'),

Table 1. 1 H (200 MHz) and 13 C (50 MHz) NMR spectral data for 2, compared with those of 1 [in CDCl₃, chemical shifts in δ (ppm) and coupling constants (J) in Hz].*

		2				1					
	¹ Hx ¹³ C-COSY-	I _{JCH}	¹ Hx ¹³ C	-COSY- ⁿ J _{CH}	¹ Hx ¹³ C-COSY- ¹ J _{CH}		¹ Hx ¹³ C-COSY- ⁿ J _{CH}				
С	δн	δc	$^{2}J_{\mathrm{CH}}$	³ J _{CH}	δн	δ_{C}	² J _{CH}	³ J _{CH}			
1	-	136.52			-	136.13	2H-2,6;2H-7				
3,5	-	152.65	2H-2,6	2MeO-3,5	-	152.50	2H-2,6	2MeO-3,5			
4	-	136.52		2H-2,6;MeO-4	-	135.82		2H-2,6;MeO-4			
1'	-	136.75	H-8	2H-7;3H-9	-	142.19	2H-2',6';H-8	2H-7;3H-9			
2'	-	123.09		H-6'	-	-					
3'	-	145.07		MeO-3'	-	152.89	H-2'	MeO-3'			
4'		136.75		H-6'	-	134.69		2H-2',6'			
5'	-	146.08	H-6'	MeO-5'	-	152.89	H-6'	MeO-5'			
СН											
2,6	6.23(s)	105.92		2H-7	6.19(s)	105.84		2H-7			
8	3.3-3.0(m)	36.19	H-7;3H-9	H-6'	3.4-2.9(m)	42.04	2H-7;3H-9	2H-2',6'			
2'	-	-			6.31(s)	103.90		H-8			
6'	6.57(s)	104.38			6.31(s)	103.90		H-8			
8'	6.0-5.7(s)	137.81	2H-7'		6.4-6.0(m)	134.43	2H-7'				
CH ₂											
7	2.76(dd,J=6.0,12.0)	45.14		2H-2,6	2.9-2.7(m)	45.34	H-8	2H-2,6;3H-9			
	2.58(dd,J=8.1,12.0)	-				-					
7'	3.4-3.2(m)	29.33		H-9'a	4.45(br d,J=5.9)	73.94	H-8'	2H-9'			
9'	4.96(dd,J=10.2,1.7)	114.50			5.27(br d,J=16.2)	117.30					
	4.84(dd,J=17.1,1.7)	-			5.14(br d,J=16.2)	-					
CH ₃											
9	1.15(d,J=6.8)	21.35		2H-7	1.33(d,J=6.4)	20.96	H-8	2H-7			
2MeO-3,5	3.75(s)	55.84			3.73(s)	55.74					
MeO-4	3.77(s)	60.83			3.77(s)	60.60					
MeO-3'	3.77(s)	60.83			3.77(s)	55.87					
MeO-5'	3.87(s)	55.89			3.77(s)	55.87					
OH-4'	5.47(s)	_			-						

^{*} The multiplicity of signals of carbon-13 atoms was deduced by comparative analysis of the PND- and DEPT-¹³C-NMR spectra. Homonuclear ¹Hx¹H-COSY 2D NMR spectra were also used for these assignments. The chemical shifts and coupling constants (J) of hydrogen atoms were obtained from ¹H-NMR (1D).

31.25 (t, C-7'), 18.94 (q, C-9')]. The intensity of the signal corresponding to C-8' ($\delta_{\rm C}$ 69.34) of 4 allowed the minor percentage of this product to be deduced as constituent of the mixture.

Preparative thin layer chromatography (PTLC) was used to isolate 4 and a mixture of 2 and 3, when the formation of an additional quantity of 4 was observed by the hydrolysis of 3. The presence of 2 in this mixture was also recognized by ¹H and ¹³C-NMR spectral data involving comparative analysis with literature values ¹ (¹H-NMR) and direct comparison with the data from the rearranged

product **2**, prepared as described in the literature¹. The comparative analysis of the proton noise decoupled (PND) and DEPT ¹³C-NMR^{2,3} spectra of **2** was used to deduce the multiplicities of the signals corresponding to methine (CH), methylene (CH₂), and methyl (CH₃) groups, and quaternary carbon atoms (Table 1).

The complete ¹H and ¹³C-NMR chemical shift assignment of **2** was also based on ¹Hx¹H-COSY, ¹Hx¹³C-COSY-¹J_{CH}, ¹Hx¹³C-COSY-ⁿJ_{CH} (n = 2 and 3, COLOC), and ¹H { ¹H}-NOE difference spectra. The ¹H and ¹³C-NMR spectral data are summarized in Table 1. The heteronuclear 2D

Table 2. 1 H (200 MHz) and 13 C (50 MHz) NMR spectral data for 4-1 and 4-2 (a mixture of epimers at C-8', 4) [CDCl₃ as solvent, chemical shifts in δ (ppm) and coupling constants (J) in Hz].*

			4-1		4-2					
	¹ Hx ¹³ C-COS	Y- ¹ JCH	¹ Hx ¹³ C-	-COSY- ⁿ J _{CH}	¹ Hx ¹³ C-COS	Y- ¹ JCH	¹ Hx ¹³ C-	COSY- ⁿ J _{CH}		
С	δ_{H}	δc	² J _{CH}	3 J $_{\mathrm{CH}}$	δн	δc	² J _{CH}	³ J _{CH}		
1	-	136.27	2H-7		-	136.27				
3,5	-	152.59	2H-2,6	2MeO-3,5	-	152.59	2H-2,6	2MeO-3,5		
4	-	135.98		2H-2,6;MeO-4	-	136.21		2H-2,6;MeO-4		
1'	-	136.43	H-6'	3H-9	-	136.43				
2'	-	122.45		H-6'	-	122.75		H-6'		
3'	<u>.</u>	145.04		MeO-3'	-	145.10		MeO-3'		
4'	-	136.27		H-6'	-	136.27				
5'	-	146.32	H-6'	MeO-5'	-	146.32	H-6'	MeO-5'		
СН										
2,6	6.18(s)	105.83		2H-7	6.23(s)	105.83				
8	3.19(qu,J=6.0)	36.43	2H-7	H-6'	3.19(qu,J=6.0)	36.43	2H-7	H-6'		
6'	6.57(s)	104.37			6.58(s)	104.37				
8'	**	68.76			**	68.94				
CH_2										
7	2.9-2.5(m)	45.36			2.9-2.5(m)	45.25				
7'	2.9-2.5(m)	34.68		3H-9'	2.9-2.5(m)	34.78				
CH ₃										
9	1.20(d,J=6.0)	21.42			1.20(d,J=6.0)	21.42				
9'	1.18(d,J=6.0)	23.09			1.18(d,J=6.0)	23.10				
2MeO-3,5	3.74(s)	55.75			3.73(s)	55.75				
MeO-4	3.77(s)	60.71			3.77(s)	60.66				
MeO-3'	3.80(s)	60.10			3.80(s)	60.05				
MeO-5'	3.87(s)	56.07			3.87(s)	56.07				
HO-4'	5.60(br s)	-			5.60(br s)	-				
HO-8'	2.30(br s)	-			2.30 (br s)	-				

^{*} The multiplicity of signals of carbon-13 atoms was deduced by comparative analysis of the PND- and DEPT-¹³C-NMR spectra. Homonuclear ¹Hx¹H-COSY 2D NMR spectra were also used for these assignments. The chemical shifts and coupling constants (J) of hydrogen atoms were obtained from ¹H-NMR (1D).

^{**} Superimposed with MeO signals.

NMR experiments ${}^{1}Hx^{13}C\text{-COSY-}{}^{1}J_{CH}$ (spin-spin coupling of hydrogen and carbon-13 through one bond) and ${}^{1}Hx^{13}C\text{-COSY-}{}^{n}J_{CH}$ (n = 2 and 3, long-range spin-spin interaction of hydrogen and carbon-13, which detects proton resonance correlated with non-directly bound carbon), along with the chemical shift parameters³ and signal multiplicities, were used in the unambiguous assignments of the ${}^{13}C\text{-NMR}$ chemical shifts (Table 1). The protonated carbons were assigned with the aid of hydrogen and carbon-13 correlations in the ${}^{1}Hx^{13}C\text{-COSY-}{}^{1}J_{CH}$, whereas the

quaternary carbon atoms and the methoxyl groups were assigned with the aid of $^1Hx^{13}C\text{-COSY-}^nJ_{CH}$ (n = 2 and 3), as described in Table 1. The superposition of the signals of carbon atoms C-1' and C-4' [δ_C 136.75 (s)] was deduced by couplings of the C-1' via two-bond with H-8 [δ_H 3.3-3.0 (m)] and three-bond with 2H-7 [δ_H 2.76 (dd) and 2.58 (dd)] and 3H-9 [δ_H 1.15 (d)], and of the C-4' three-bond coupling to H-6' [δ_H 6.57 (s)]. Furthermore, the signals at δ_C 152.65 [2C-3,5 two-bond coupling to 2H-2,6 (δ_H 6.23, s) and C-3

Table 3. ¹H (200 MHz) and ¹³C (50 MHz) NMR spectral data for 4a-1 and 4a-2 (a mixture of epimers at C-8', 4a) [CDCl₃ as solvent, chemical shifts in δ (ppm) and coupling constants (J) in Hz].*

			4a-1		4a-2					
	¹ Hx ¹³ C-COS	Y- ^l J _{CH}		COSY- ⁿ J _{CH}	¹ Hx ¹³ C-COS	Y- ¹ J _{CH}	¹ Hx ¹³ C-C	COSY- ⁿ J _{CH}		
C	δ_{H}	δ_{C}	² J _{CH}	$^{3}J_{CH}$	δн	$\delta_{\rm C}$	$^{2}J_{CH}$	$^{3}J_{\mathrm{CH}}$		
1	-	135.95	2H-7		-	135.95	2H-7			
3,5	-	152.65	2H-2,6	2MeO-3,5	·-	152.56	2H-2,6	2MeO-3,5		
4	-	135.95		2H-2,6;MeO-4	-	135.95		2H-2,6;MeO-4		
1'	-	144.11		2H-7';3H-9	-	144.11		2H-7';3H-9		
2'		121.81	2H-7'	H-6'	-	121.46	2H-7'	H-6'		
3'	-	151.14		MeO-3'	-	151.14		MeO-3'		
4'	-	130.93		H-6'	-	130.93		H-6'		
5'	-	150.74	H-6'	MeO-5'	-	150.74	H-6'	MeO-4'		
AcO-4'	-	168.56	2.31(AcO-4')		-	168.56	2.31(AcO-4')			
AcO-8'	-	170.54	1.95(AcO-8')		-	170.54	1.95(AcO-8')			
СН										
2,6	6.19(s)	105.80		2H-7	6.24(s)	105.80		2H-7		
8	3.44(m)	36.44	2H-7;3H-9		3.40(m)	36.68	2H-7;3;H-9			
6'	6.62(s)	105.04			6.66(s)	105.04				
8'	4.85(m)	71.44			4.71(m)	71.18				
CH ₂										
7	2.70(m)	45.83		2H-2,6;3H-9	2.70(m)	45.10		2H-2,6;3H-9		
7'	2.55(m)	30.97		3H-9'	2.55(m)	30.97		3H-9'		
CH ₃										
9	1.30(d)	21.22			1.20(d, 21.97					
9'	1.09(d,J=6.0)	19.10			0.99(d,J=5.9)	18.88				
2MeO-3,5	3.74(s)	55.79			3.74(s)	55.79				
MeO-4	3.74(s)	60.70			3.74(s)	60.70				
MeO-3'	3.66(s)	60.80			3.66(s)	60.80				
MeO-5'	3.81(s)	55.93			3.81(s)	55.93				
AcO-4'	2.31(s)	20.48			2.31(s)	20.48				
AcO-8'	1.95(s)	21.22			1.95(s)	21.22				

^{*} The multiplicity of signals of carbon-13 atoms was deduced by comparative analysis of the PND- and DEPT-¹³C-NMR spectra. Homonuclear ¹Hx¹H-COSY 2D NMR spectra were also used for these assignments. The chemical shifts and coupling constants (J) of hydrogen atoms were obtained from ¹H-NMR (1D).

and C-5 three-bond interaction with hydrogens of MeO-3 (δ_H 3.75, s) and MeO-5 (δ_H 3.75, s) respectively], 136.75 (C-1' and C-4'), and 136.52 [C-1 and C-4, this latter three-bond coupled to 2H-2,6 (δ_H 6.23, s)] and to hydrogens of the MeO-4 (δ_H 3.77, s) showed practically the same intensity. The chemical shifts for carbon C-3' [δ_C 145.07 (s)] was assigned through its three-bond coupling to hydrogens of MeO-3' [δ_H 3.77 (s)], whereas C-5' [δ_C 146.08 (s)] was characterized by its two-bond interaction with H-6' [δ_H 6.57 (s)] and

three-bond coupling to the hydrogens of the MeO-5' $[\delta_H \ 3.87 \ (s)]$. Additionally, the quaternary carbon atom C-2' $[\delta_C \ 123.09 \ (s)]$ showed a coupling through three-bonds to H-6' $[\delta_H \ 6.57 \ (s)]$. Other analogous correlations are described in Table 1.

Homonuclear ^{1}H { ^{1}H }-NOE difference spectra were performed for compound **2**. Irradiation at δ_{H} 3.87 (MeO-5') showed 4% NOE at δ_{H} 6.57 (H-6') and irradiation at δ_{H} 3.75 (2 MeO-3,5) revealed 16% NOE at δ_{H} 6.23 (2H-2,6). These data were used to confirm the attribution of the

Table 4. ¹H (200 MHz) and ¹³C (50 MHz) NMR spectral data for **2**, in CDCl₃, benzene-d₆ and acetone-d₆ as solvents [chemical shifts in δ (ppm) and coupling constants (J) in Hz].*

	CDCl ₃		Benzene-d ₆		Δδ			Acetone-d ₆		Δδ	
C	δ_{C}	δ_{H}	δ_{C}	δ_{H}	$\Delta\delta_C$	$\Delta\delta_H$	δ_{C}	δ_{H}	$\Delta\delta_C$	$\Delta\delta_H$	
1	136.52	-	136.39	-	-0.13	-	137.50	· -	0.98	-	
3,5	152.65	-	153.87	-	1.22	#11	153.75	-	1.10	-	
4	136.52	-	137.46	-	0.94	-	136.81	-	0.29	-	
1'	137.75	-	136.82	-	-0.93	-	136.81	-	-0.94	-	
2'	123.09	-	123.69	-	0.60	-	123.79	-	0.70	-	
3'	145.07	-	145.85	-	0.78	-	146.44	-	1.37	-	
4'	136.75	-	137.46	-	0.71	-	137.50	-	0.75	-	
5'	146.08	-	146.71	-	0.63		147.90	-	1.82	-	
CH				•							
2,6	105.92	6.23(s)	107.10	6.33(s)	1.18	0.10	107.16	6.36(s)	1.24	0.13	
8	36.19	3.3-3.0(m)	36.61	3.4-3.2(m)	0.42	0.10	37.01	3.15(m)	0.82	0.00	
6'	104.38	6.57(s)	104.40	6.51(s)	0.02	-0.07	105.88	6.75(s)	1.50	0.18	
8'	137.81	6.0-5.7(m)	138.55	6.1-6.8(m)	0.74	0.10	139.31	5.86(m)	1.30	0.01	
CH_2											
7	45.14	2.76(dd,J=6.0,12.0)	45.55	2.90(dd,J=5.8,13.5)	0.41	0.14	45.45	2.8-2.7	0.31	-0.01	
	-	2.58(dd,J=8.1,12.0)	-	2.64(dd,J=8.2,13.5)	0.00	0.06	-	2.8-2.7	-	-0.17	
7'	29.33	3.4-3.2(m)	29.94	3.5-3.3(m)	0.61	0.01	30.07	3.26(m)	0.74	-0.04	
	-	3.4-3.2(m)	-	3.4-3.2(m)	-	0.00	-	3.26(m)	-	-0.04	
9'	114.50	4.96(dd,J=10.2,1.7)	114.50	4.97(dd,J=9.4,1.9)	0.00	0.01	114.54	4.97(dd,J=17.1,1.7)	0.04	0.01	
	-	4.84(dd,J=17.1,1.7)	-	4.95(dd,J=14.3,1.9)	-	0.11	-	4.86(dd,J=17.1,1.7)	-	0.02	
CH ₃											
9	21.35	1.15(d,J=6.8)	21.63	1.2(d,J=6.8)	0.28	0.09	21.89	1.15(d,J=6.8)	0.54	0.00	
2MeO-3,5	55.84	3.75(s)	55.78	3.43(s)	-0.06	-0.32	56.15	3.72(s)	0.31	-0.03	
MeO-4	60.83	3.77(s)	60.50	3.85(s)	-0.33	0.08	60.46	3.64(s)	-0.37	-0.13	
MeO-3'	60.83	3.77(s)	60.36	3.73(s)	-0.47	-0.04	60.54	3.74(s)	-0.29	-0.03	
MeO-5'	55.89	3.87(s)	55.61	3.30(s)	-0.28	-0.47	56.48	3.84(s)	0.59	-0.03	
HO-4'	-	5.47(s)	-		-		-	8.00(s)	-	-2.53	

^{*} The mMultiplicity of signals of carbon-13 atoms was deduced by comparative analysis of the PND- and DEPT-¹³C-NMR spectra. Homonuclear ¹Hx¹H-COSY and heteronuclear ¹Hx¹³C-COSY-ⁿJ_{CH}[n=1; n=2 and 3, COLOC (Table 5)] 2D NMR spectra were also used for these assignments. The chemical shifts and coupling constant (J) of hydrogen atoms were obtained from ¹H-NMR (1D).

signals corresponding to methoxyl groups located at C-5' and 2C-3,5, respectively.

Thus, the unambiguous ¹H and ¹³C chemical shifts of **2** were established. Similarly, the ¹H and ¹³C chemical shifts of **1** were also assigned (Table 1), and may be used for the confirmation of the values described in the literature ^{1,4,5}.

An analogous procedure described for **2** was used in the analysis of the ¹H and ¹³C-NMR spectra of **4** (Table 2) and its diacetyl derivative **4a** (Table 3). Extensive 1D and 2D NMR experiments, not detailed here because they involve a procedure analogous to that reported for **2** (*vide supra*), were used to elaborate Tables 2 and 3, which summarize the ¹H and ¹³C-NMR assignments for **4**, a mixture of epimers at C-8' [8'-(S)- and 8'-(R)-], and their diacetyl derivatives [**4a**: 8'-(S) and 8'-(R)-] obtained by the treatment of **4** (**4-1** and **4-2**) with acetic anhydride (Ac₂O) in the presence of pyridine.

The relative percentages of 4a-1 (\sim 58.8%) and 4a-2 (\sim 41.2%) were deduced by the integration of the signals corresponding to H-8' at $\delta_{\rm H}$ 4.85 (4a-1) and 4.71 (4a-2).

Additional confirmation of a mixture of the epimers 4-1 and 4-2 was obtained by GC/EIMS analysis, which revealed the presence of two compounds in the GC [$R_t = 11.796$ (4.2) and $R_t = 11.906$ min (4.1, major)], and practi-

cally identical mass spectra. The two spectra showed significant peaks at m/z 420 [M^{\bullet^+} , 7% (4-1) and 7% (4-2)], 239 [100% (4-1) and 100% (4-2)], 221 [46% (4-1) and 43% (4-2)], 209 [46% (4-1) and 41% (4-2)], 182 [65% (4-1) and 61% (4-2)], 181 [79% (4-1) and 73% (4-2)], and 165 [76% (4-1) and 78% (4-2)], which were attributed to ionic fragments I-VI, respectively. These data are also consistent with the epimeric structures 4-1 and 4-2.

The analysis of the ¹H and ¹³C-NMR spectra of the mixture containing 2 and 3 after the separation of 4 by thin layer chromatography, was facilitated after the collection of the corresponding data for 2 (Table 1) and 4 (Table 2), since the major distinction between these three products encompass the substitution at C-2': allyl group in 2, 3-trifluoroacetate-*n*-propyl group in 3 and 3-hydroxy-*n*-propyl group in 4. After the assignment of the signals corresponding to hydrogen and carbon-13 of 2 and 4 (still present in small percentages), the remaining absorptions in the ¹H and ¹³C-NMR spectra were used to confirm the presence of the 3-fluoroacetate-n-propyl moiety in 3, a mixture of the epimers 3-1 and 3-2 (vide supra). The presence of these three products in a mixture was confirmed by GC/EIMS analysis, which appeared in the GC peaks at R_t 8.391 (2), 9.157 (3), 9.763 (4.1), and 9.878 min (4.2), together with 1

Table 5. ¹Hx¹³C-COSY-ⁿJ_{CH} (n=2 and 3, COLOC), 2D heteronuclear correlation via long-range coupling, for compound **2** [CDCl₃, benzene-d₆ and acetone-d₆ as solvents].

	C	DCl ₃	Ber	nzene-d ₆	Acetone-d ₆		
C	² J _{CH}	³ J _{CH}	² J _{CH}	³ J _{CH}	² J _{CH}	³ J _{CH}	
1					2H-7		
3,5	2H-2,6	2MeO-3,5	2H-2,6	2MeO-3,5	2H-2,6	2MeO-3,5	
4		2H-2,6;MeO-4		2H-2,6;MeO-4		2H-2,6;MeO-4	
1'	H-8	2H-7;3H-9		3H-9		2H-7;3H-9	
2'		H-6'		H-6'	2H-7'	H-6'	
3'		MeO-3'		MeO-3'		2H-7',MeO-3'	
4'		H-6'		H-6'		H-6'	
5'	H-6'	MeO-5'	H-6'	MeO-5'	H-6'	MeO-5'	
СН							
2,6		2H-7		H-7		2H-7	
8	H-7;3H-9	H-6'	3H-9	H-6'	2H-7;3H-9	H-6'	
6'						H-8	
8'	2H-7'				2H-7'		
CH ₂							
7		2H-2,6		2H-2,6;3H-8		2H-2,6	
7'		H-9'a					
9'						2H-7'	
CH ₃							
9		2H-7				2H-7	

(R_t = 7.316 min, present in a very small percentage). The mass spectrum of each of these peaks allowed the recognition of the corresponding product by molecular peaks at m/z 402 (1, R_t = 7.316 min), 402 (2, R_t = 8.391 min), 420 (4.1, R_t = 9.763 min) and 420 (4.2, R_t = 9.878 min), and comparison with the mass spectra of 2 [m/z 402 (8.4%, M*); m/z 221 (100%, VI); m/z 181 (25.5%, V)], 4.1 and 4.2 (vide supra). The mass spectrum of 3 (R_t = 9.157 min) did not show the molecular ion peak (m/z 516), and showed the base peak at m/z 373, together with another significant peak at m/z 207 (29%), which were attributed to ionic fragments VII and VIII, respectively. These ionic fragments may be accounted for through an *ortho*-fragmentation and hydrogen radical elimination, leading to VII or a loss of the trimethoxyphenyl radical to produce VIII⁶. The

peaks at m/z 373 and 207, though having a small relative abundance, were also observed in the mass spectra of **4.1** and **4.2**, and are in accordance with the structures proposed for fragments **VII** and **VIII**.

The superposition of the signals of the carbon atoms C-1 and C-4 ($\delta_{\rm C}$ 136.52) observed in the ¹³C-NMR spectra of **2** was confirmed by NMR spectra, including 2D experiments, using benzene-d₆ and acetone-d₆ as solvents (Tables 4 and 5). In benzene-d₆ the superposition of the signals for C-4 and C-4' ($\delta_{\rm C}$ 137.46) was verified, and in acetone-d₆, C-1' and C-4 ($\delta_{\rm C}$ 136.81) were superimposed. The solvent effects on the chemical shifts and linewidths of the signals, as well as the magnitude of the spin-spin coupling constants (J), in the NMR spectra of **1** and **2** are summarized in Tables 4,6 and 7. As anticipated, these parameters are affected by

Table 6. ¹H (200 MHz) and ¹³C (50 MHz) spectral data for neolignan aurein 1, in CDCl₃, benzene-d₆ and acetone-d₆ as solvents, chemical shifts in δ (ppm) and coupling constants (J) in Hz.*

	CDCl ₃		Benzene-d ₆ (C ₆ D ₆)		Acetona-d ₆ (C ₃ D ₆ O)		$\Delta\delta^a$		$\Delta\delta^{\rm b}$	
С	δ_{C}	δ_{H}	δ_{C}	δ_{H}	δ_{C}	δ_{H}	$\Delta\delta_C$	$\Delta\delta_H$	$\Delta\delta_C$	$\Delta\delta_{H}$
1	136.13	-	136.37	-	137.19	-	0.24	-	1.06	-
3,5	152.50		153.71	- ,	153.75	-	1.21	-	1.25	-
4	135.82	-	137.61	- <u>-</u>	137.19	-	1.79	-	1.37	-
1'	142.19	-	142.46	-	143.38	-	0.27	-	1.19	-
3',5'	152.89	-	154.01		154.06	-	1.12	-	1.17	-
4'	134.69	-	136.22	-	136.17	-	1.53	-	1.48	-
CH										
2,6	105.84	6.19(s)	106.97	6.68(s)	107.14	6.39(s)	1.13	0.49	1.30	0.20
8	42.04	3.4-2.9(m)	42.56	3.5-3.2(m)	42.72	3.1-2.9(m)	0.52	0.1-0.3	0.68	-0.30
2',6'	103.90	6.31(s)	105.21	6.80(s)	105.20	6.50(s)	1.11	0.49	1.30	0.19
8'	134.43	6.4-6.0(m)	135.56	6.8-6.5(m)	136.17	6.2-6.0(m)	1.13	0.4-0.5	1.74	-0.20
CH ₂										
7	45.34	2.9-2.7(m)	45.72	3.5-3.2(m)	45.60	2.8-2.6(m)	0.34	0.6-0.5	0.26	-0.10
			-	3.2-3.0(m)	-					
7'	73.94	4.45(br d,J=5.9)	73.91	5.01(br d,J=6.9)	74.04	4.41(br d,J=5.5)	-0.03	0.56	0.10	-0.04
9'	117.30	5.27(br d,J=16.2)	116.39	5.77(br d,J=17.2)	116.45	5.31(br d,J=17.2)	-0.91	0.50	-0.85	0.04
		5.14(br d,J=10.1)	-	5.48(br d,J=9.2)	-	5.11(br d,J=11.2)	-	0.34	-	-0.03
CH ₃										
9	20.96	1.33(d,J=6.4)	21.45	1.69(d,J=6.5)	21.45	1.23(d,J=6.7)	0.49	0.36	0.49	-0.10
2MeO-3,5	55.74	3.73(s)	55.74	3.87(s)	56.34	3.76(s)	0.00	0.14	0.60	0.03
MeO-4	60.60	3.77(s)	60.41	4.21(s)	60.48	3.67(s)	-0.19	0.44	-0.12	-0.10
2MeO-3',5'	55.87	3.77(s)	55.86	3.89(s)	56.24	3.72(s)	-0.01	0.12	0.37	-0.05

^{*} Homonuclear ¹Hx ¹H-COSY and heteronuclear ¹Hx ¹³C-COSY[¹J_{CH} (Table 2) and ⁿJ_{CH} (n=2,3, COLOC, Table 6)] 2D experiments were also used for these assignments. The multiplicity of the signals of the carbon atoms was deduced by comparative analysis of the ¹³C-NMR-PND and ¹³C-NMR-DEPT spectra.

^a $\Delta\delta_{C} = \delta_{C}(C_{6}D_{6}) - \delta_{C}(CDC_{13})$ and $\Delta\delta_{H} = \delta_{H}(C_{6}D_{6}) - \delta_{H}(CDC_{13})$.

 $^{^{}b}\Delta\delta_{C}=\delta_{C}\left(C_{6}D_{6}O\right)$ - $\delta_{C}\left(CDC_{13}\right)$ and $\Delta\delta_{H}=\delta_{H}\left(C_{3}D_{6}O\right)$ - $\delta_{H}\left(CDC_{13}\right)$.

the surrounding molecules of the same or different species, revealing that the shielding constants (σ) of a magnetic nucleus in a particular molecule is not only determined by the eletronic distribution within the molecule but also by the nature of the surrounding medium. The calculated solvent-induced difference ($\Delta\delta$) in the 1H ($\Delta\delta_H$) and ^{13}C ($\Delta\delta_C$) chemical shifts of 2 and 1 are described in Tables 4 and 5. After all of the hydrogen and carbon (multiplicities deduced by comparative analysis of the PND- and DEPT- ^{13}C -NMR spectra) resonances had been associated via $^1Hx^{13}C$ -COSY- $^1J_{CH}$ ($^1J_{CH}$ = 130.2 Hz) experiments (Tables 4 and 6), $^1Hx^1H$ -COSY and $^1Hx^{13}C$ -COSY- $^nJ_{CH}$ (n = 2 and 3, COLOC) spectra of 2 and 1 were also recorded (Tables 5 and 7).

Specific solvent effects in the chemical shifts of ${}^{1}H$ and ${}^{13}C$ signals of dissolved compounds consist mainly of the hydrogen-bonding and aromatic solvent-induced shift (ASIS) effects. Hydrogen bonding usually induces a downfield shift of the resonance signal of an involved hydrogen. Carbon-13 solvent shifts are linearly dependent on (ϵ -1)/(2ϵ -n), ϵ = dieletric constant and n = refractive index⁷. Downfield shifts are observed for both ${}^{1}H$ and ${}^{13}C$ signals of CDCl₃, as compared to nonpolar solvents to medium susceptible to hydrogen bonding. As observed in Tables 4 and 6, solvent shifts may be different in magnitude and direction.

In Chart 1 is presented a proposal of the acid catalyzed mechanism for the transformation of aurein 1 to rearranged product 2. This intramolecular rearrangement was proposed on the basis of the absence of a 3,4,5trimethoxyphenyl system containing an allyl group. Furthermore, this reaction in the presence of 1,2,3trimethoxybenzene, used in a ratio of 3 moles to 1 mole of aurein (1), did not afford the derivative produced by intermolecular reaction, the same products being obtained. The allyl group at C-2' of the rearranged product 2 may react with trifluoroacetic acid to furnish 3 through the formation (rate-determining step) of a secondary carbocation (more stable when compared with the primary one) by the eletrophilic addition of a proton from CF₃COOH to the double bond following the reaction of the highly reactive intermediate carbocation with CF₃COO to produce 3 (two epimers). In the presence of H₂O, more nucleophilic than CF₃COO⁻, the formation of 4 (two epimers, 4.1 and 4.2) occurs, which can also be produced by the hydrolysis of 3, as observed by preparative TLC through the increase of 4 and the corresponding decrease of 3.

Experimental

General procedures

One and two-dimensional NMR spectra were run in CDCl₃ (1 - 4), benzene-d₆ (1 and 2) and acetone-d₆ (1 and

Table 7. ¹Hx¹³C-COSY-ⁿJ_{CH} (n= 2 and 3, COLOC), 2D heteronuclear correlation via long-range coupling, for compound 1, in CDCl₃, benzene-d₆ and acetone-d₆ as solvents.

	CI	OCl ₃	Ben	zene-d ₆	Ac	Acetone-d ₆		
С	² J _{CH}	³ J _{CH}	² J _{CH}	³ CH	² J _{CH}	³ J _{CH}		
1	2H-2,6;2H-7		2H-7		2H-7			
1'	2H-2',6';H-8	2H-7;3H-9	2H-2',6'	2H-7;3H-9		3H-9		
3,5	2H-2,6	2MeO-3,5	2H-2,6	2MeO-3,5		2MeO-3,5		
3',5'	2H-2',6'	2MeO-3',5'	2H-2',6'	2MeO-3',5'		2MeO-3',5'		
4		2H-2,6;MeO-4		2H-2,6;MeO-4		2H-2,6;MeO-4		
4'		2H-2',6'		2H-2',6';2H-7'		2H-2',6';2H-7'		
СН								
2,6		2H-7		2H-7		2H-7		
2',6'		H-8		H-8				
8	2H-7;3H-9	2H-2',6'	3H-9	2H-2',6'				
8'	2H-7'							
CH ₂								
7	H-8	2H-2,6;3H-9		2H-2,6;3H-9		3H-9		
7'	H-8'	2H-9'						
9'				2H-7'		2H-7'		
CH ₃								
9	H-8	2H-7		2H-7				

Chart 1. Proposal of the acid catalyzed mechanistic transformation (CF3COOH) of aurien 1.

2), using a Bruker AC-200 Instrument at 200 MHz for 1H and 50 MHz fo ^{13}C (PND and DEPT), with chemical shifts reported in δ values (ppm) downfield from the TMS internal standard and coupling constants (J) in Hz. The DEPT- ^{13}C , $^1Hx^1H$ -COSY, and $^1Hx^{13}C$ -COSY- $^nJ_{CH}$ (n = 1; n = 2 and 3, COLOC) NMR spectra and NOE difference spectra ($^1H\{^1H\}$ -NOE) experiments were carried out using Bruker

commercial microprograms. GC/EIMS (70 eV) spectra were obtained using a Hewlett-Packard model 5890-Series II gas chromatograph, with a 12 m x 0.2 mm HP-1 (100% dimethylpolysiloxane) capillary column, programmed from 180 °C to 290 °C at a rate of 20 °C/min, interfaced with a Hewlett-Packard model 5989A series mass selective detector. Analytical and preparative thin layer chromatog-

raphy (TLC) were performed on silica gel Kieselgel Merck 60 PF_{254} .

Reaction of aurein (1) with trifluoroacetic acid

Aurein (1, 150 mg) in CF₃COOH (10 mL) was maintained at room temperature for 24 h and extracted with CHCl₃. Evaporation of CHCl₃ afforded a residue (140 mg) which was submitted to preparative TLC (EtOAc-CHCl₃, 8:2) to yield a mixture of 2 and 3 (69.6 mg) and 4 (62.2 mg).

Preparation of 2-(2-allyl-4-hydroxy-3,5-dimethoxyphenyl)-1-(3,4,5-trimethoxy-phenyl)-propane (2)¹

Aurein (1, 275 mg) in HOAc (6 mL) was treated with a solution of H_2SO_4 (0.3 mL) in HOAc (6 mL). After 48 h at room temperature, H_2O (10 mL) was added and the mixture was extracted with CHCl₃ (3 x 5 mL). Evaporation of the solvent furnished a residue which was separated by SiO₂ column chromatography to afford 2 (123.3 mg). ¹H and ¹³C-NMR: Table 1. EIMS (70 eV) m/z (rel. int.): 402 (8.4, $M^{\bullet+}$), 221 (100.0, II), 181 (25.5, V).

2-[4-Hydroxy-3,5-dimethoxy-2-(2-hydroxy-n-propyl)-phenyl]-1-(3,4,5-trimethoxy-phenyl)-propane (4)

Viscous oil. IR υ KBr/max ^(cm-1): 3424 (OH), 1599 and 1502 (arom. ring). ¹H and ¹³C: Table 2. GC/EIMS (70 eV): R_t = 11.796 min (4.2), m/z (rel. int.): 420 (7, M⁺), 239 (100.0, I), 221 (43.0, II), 209 (41.0, III), 182 (61.0, IV), 181 (73.0, V), 165 (78.0, VI); R_t = 11.906 min (4.1), m/z(rel. int.): 420 (7.0, M⁺), 239 (100.0, I), 221 (46.0, II), 209 (46.0, III), 182 (65.0, IV), 181 (79.0, V), 165 (76.0, VI).

2-[4-Acetoxy-3,5-dimethoxy-2-(2-acetoxy-n-propyl)-phenyl]-1-(3,4,5-trimethoxy-phenyl)-propane (4a)

The mixture of the epimer 4 (62.2 mg) was acetylated with Ac₂O (1 mL) in the presence of pyridine (1 mL) at room temperature. After 48 h, the mixture was worked-up as usual to furnish 4a (88.6 mg), an amorphous solid. IR υ KBR/max ^(cm-1): 1768 ($\upsilon_{C=O}$ of the AcO-4'), 1731 ($\upsilon_{C=O}$ of the AcO-8'), 1592 and 1500 (arom. ring). ¹H and ¹³C-NMR: Table 3. GC/EIMS (70 eV) m/z (rel. int.): 504 (2.7,

VII (m/z 337)

VIII (m/z 207)

IX (m/z 281)

 $M^{\bullet+}$), 444 (2.3, M-HOAc). 402 (3.2, M-HOAc-CH₂ = C = O), 281 (8.2, **IX**), 221 (100, **II**), 207 (14.7, **VIII**), 181 (90, **V**). The separation of the epimers (**4a-1** and **4a-2**) was not observed under the conditions used, as only one peak appeared in the chromatogram.

Mixture of **2** and **3** = 2-[4-hydroxy-3,5-dimethoxy-2-(2-trifluoroacetoxy-n-propyl)-phenyl]-1-(3,4,5-trimethoxyphenyl)-propane

Viscous oil. GC/EIMS (70 eV): $R_t = 8.391 \text{ min } (2)$, m/z (rel. int.): 402 (8.4, $M^{\bullet+}$), 221 (100.0, II), 181 (25.5, V); $R_t = 9.157 \text{ min } (3)$, m/z (rel. int): 516 (absent, $M^{\bullet+}$), 373 (100.0, VII), 207 (29.0, VIII).

Acknowledgments

This work was supported by fellowships from CNPq (R.B.F. and M.G. de C.) and CAPES (J.R.V.), and by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Programa de Apoio ao Desenvolvimento Científico e Tecnológico (PADCT) and Financiadora de Estudos e Projetos (FINEP)-PADCT. The authors are also grateful to

Prof. Carlos Humberto S. Andrade (Universidade Federal do Ceará) for a sample of aurein.

References

- Gottlieb, O.R.; Maia, J.G.S.; Mourão, J.C. Phytochemistry 1976, 15, 1289.
- Sanders, J.K.M.; Hunter, B.K. Modern NMR Spectroscopy A Guide for Chemists; Oxford University Press; Oxford, 1993, 2nd Edition.
- 3. Breitmaier, E.; Voelter, W. Carbon-13 NMR Spectroscopy: High-Resolution Methods and Applications in Organic Chemistry and Biochemistry; VCH: Weinheim, 1987, 3rd Edition.
- 4. Wenkert, E.; Gottlieb, H.E.; Gottlieb, O.R.; Pereira, M.O. da S.; Formiga, M.D. *Phytochemistry* **1976**, *5*, 1547.
- Agrawal, P.K.; Thakur, R.S. Magn. Reson. Chem. 1985, 23, 389.
- Budzikievicz, M.; Djerassi, C.; Williams, D.H. Mass Spectra of Organic Compounds Holden Day: London, 1967.
- 7. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry; VCH: Weinheim, 1990; 2nd Edition.