Quantification of Synthetic Amino-Nitroquinoxaline Dyes: An Approach Using Image Analysis

Lilian C. da Silva,^a Djalan F. de Lima,^a Janine A. Silva,^a Camilo L. M. de Morais,^a Brunno L. Albuquerque,^b Adailton J. Bortoluzzi,^c Josiel B. Domingos,^b Renata M. Araújo,^a Fabrício G. Menezes^a and Kássio M. G. Lima^{*,a}

^aGrupo de Pesquisa em Química Biológica e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil

^bLaboratório de Catálise Biomimética and ^cLaboratório de Bioinorgânica e Cristalografia, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis-SC, Brazil

Procedure for quantification of compounds 2 and 3 through UV-Vis data

The first attempt to quantify the compounds 2 and 3 through UV-Vis data was using univariate calibration procedure. The results are summarized in Figures S1 and S2.

Figure S1. UV-Vis spectra of quinoxaline derivatives in DMSO: (a) 2; (b) 3; and (c) 2 + 3.

Figure S2. Solutions of calibration set for solution studies of compounds **2** and **3**, with concentrations (in mmol L⁻¹) of (a) 5.0, (b) 2.5, (c) 1.25, (d) 0.62, (e) 0.31, (f) 0.16, (g) 0.078, (h) 0.039, (i) 0.019, (j) 0.0098, (k) 0.0049, and (l) 0.0024; and for a mixture of dyes **2:3** with proportions of (a) 5.0:0.0, (b) 4.5:0.5, (c) 4.0:1.0, (d) 3.5:1.5, (e) 3.0:2.0, (f) 2.5:2.5, (g) 2.0:3.0, (g) 1.5:3.5, (h) 1.0:4.0, (i) 0.5:4.5, and (j) 0.0:5.0.

^{*}e-mail: kassiolima@gmail.com

Quantification of compounds 2 and 3 through image analysis

Figure S3. Scanned image of TLC plates containing the amino-nitro quinoxaline dyes (a) 2 and (b) 3. (c) Contour plot obtained for 2 and 3.

Figure S4. Best results found in the experiments involving quantification of compounds 2 and 3 through UV-Vis and univariate calibration. (a) Calibration set for compound 2 (correlation = 0.999) at 411 nm; (b) calibration set for compound 3 (correlation = 0.999) at 331 nm; (c) prediction of compound 2 in a mixture (correlation = 0.823); and (d) prediction of compound 3 in a mixture (correlation = 0.743).

Due to the unsatisfactory results, a second attempt was made using PLS regression of the UV-Vis data. In this case, the results are shown in Figure S5 and Table S1.

Figure S5. (a) PLS regression for compound 2; (b) PLS regression for compound 3. In both models, two latent variables (explained variance >99%) was used.

Table S1. Figures of merit for PLS regression

Calibration	Compound	
	2	3
RMSEC	$2.34 \times 10^{-7} \text{ mol } \text{L}^{-1}$	$6.27 \times 10^{-7} \text{ mol } \text{L}^{-1}$
R ² calibration	0.999	0.998
Cross-validation leave-one-out		
RMSECV	$3.36 \times 10^{-7} \text{ mol } \text{L}^{-1}$	$1.22 \times 10^{-6} \text{ mol } \text{L}^{-1}$
R ² cross-validation	0.999	0.996
Prediction		
RMSEP	$1.41 \times 10^{-5} \text{ mol } L^{-1}$	$1.80 \times 10^{-5} \text{ mol } \text{L}^{-1}$
R ² prediction	0.758	0.400

RMSEC: root mean square error of calibration; R²: coefficient of determination; RMSECV: root mean square error of cross validation; RMSEP: root mean square error of prediction.

The same trend is observed using PLS regression, giving unsatisfactory results for the UV-Vis data.

Figure S6. RGB absorbance signal for TLC plate of dye 3. See the presence of only the B channel when the concentration is increasing, and the signal saturates at 0.004 mol L^{-1} .

Figure S7. Kinetic profile (triplicate) obtained by TLC/IA for equimolar reaction of compound 2 and pyrrolidine, in CHCl₃.

Figure S8. Nonlinear fit obtained for 1 / [2] vs. time for reaction of 2 with pyrrolidine in CHCl₃.

Figure S9. Color changes (naked eye colorimetric test) in DMSO solution of **4** (A) before and after addition of $OH^-((B) \ 10 \ eq; (C) \ 20 \ eq; (D) \ 40 \ eq; (E) \ 60 \ eq; (F) \ 80 \ eq; (G) \ 100 \ eq).$

RGB-resolved absorbance

$$F = -\log \frac{I}{I_0} \tag{1}$$

where *F* is the RGB-resolved absorbance; *I* is the intensity of the R, G or B channels; and I_0 is the maximum value of intensity or blank: 255.