## Layered Zinc Hydroxide Salts Intercalated with Anionic Surfactants and Adsolubilized with UV Absorbing Organic Molecules

Ana C. T. Cursino,<sup>a</sup> Vicente Rives,<sup>b</sup> Luís D. Carlos,<sup>c</sup> João Rocha<sup>d</sup> and Fernando Wypych<sup>\*,a</sup>

<sup>a</sup>Centro de Pesquisa em Química Aplicada (CEPESQ), Departamento de Química, Universidade Federal do Paraná, P.O. Box 19032, 81531-980 Curitiba-PR, Brazil

> <sup>b</sup>GIR-QUESCAT, Departamento de Química Inorgánica, Universidad de Salamanca, 37008 Salamanca, Spain

<sup>c</sup>Department of Physics and <sup>d</sup>Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal



Figure S1. FTIR spectra of LHS/S samples before (a) and after adsolubilization with benzophenone-3: LHS/Sb3-mh (b); LHS/Sb3-m (c) and raw benzophenone-3 (d); where S = DDS (A) and DBS (B).



Figure S2. Thermogravimetric (TGA) curves of LHS/S (a); LHS/Sb3-mh (b) and LHS/Sb3-m (c), whereby S (A) DDS and (B) DBS.

\*e-mail: wypych@ufpr.br



Figure S3. Color of the compounds: LHS/DDSb3-mh (a); LHS/DDSb3-m (b); LHS/DBSb3-mh (c) and LHS/DBS3-m (d), without (i) and under UV irradiation (365 nm) (ii).



Figure S4. Emission spectra of the adsolubilization products (left panels) and change of the percentage of intensity as a function of time (right panels).



Figure S5. PXRD patterns (A) and FTIR spectra (B) of LHS/DDS before (a) and after adsolubilization: LHS/DDSehmc-r (b); LHS/DDSehmc-m (c); ehmc (d); LHS/DDSehs-r (e); LHS/DDSehs-m (f) and ehs (g). \* = ZnO.



**Figure S6**. Excitation (Panel I) and emission spectra (Panel II) of LHS/S adsolubilizated with ethyl cinnamate (A) [(a) LHS/DBSec-r; (b) LHS/DBSec-r; (c) LHS/DDSec-r; (d) LHS-DDSec-m], 2-ethylhexyl 4-methoxycinnamate (B) [(a) LHS/DBSehmc-r; (b) LHS/DBSehmc-m; (c) LHS/DDSehmc-r; (d) LHS/DDSehmc-m] and 2-ethylhexyl salicylate (C) [(a) LHS/DBSehs-r; (b) LHS/DBSehs-r; (c) LHS/DDSehs-r; (e) LHS/DDSehs-r]. Inset shows a photograph of LHS/DBSehs-r (a) and LHS/DDSehs-r (c) without (i) and under UV irradiation (365 nm) (ii).



Figure S7. BET analysis of LHS/DSs3-mh (b); LHS/DBSb3-m (c); LHS/DBS (a); LHS/DBSb3-mh (b); LHS/DBSb3-m (c); LHS/DDS (d); LHS/DDSb3-mh (e) and LHS/DBSb3-m (f).

| Table S1. BET surface area, pore volume before and after adsolubilization with benzophenone- |
|----------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------|

| Sample       | $\mathbf{S}_{\mathrm{BET}}^{}a}$ | R <sup>b</sup> | S <sub>t</sub> <sup>c</sup> | R <sup>d</sup> | $V_p^{e}$ |
|--------------|----------------------------------|----------------|-----------------------------|----------------|-----------|
| LHS/DDS      | 5.05                             | 0.9988         | 7.43                        | 0.9999         | 8.54      |
| LHS/DDSb3-mh | 5.25                             | 0.9983         | 8.18                        | 0.9995         | 9.83      |
| LHS/DDSb3-m  | 1.18                             | 0.9981         | 1.45                        | 0.9767         | 1.47      |
| LHS/DBS      | 7.74                             | 0.9813         | 13.35                       | 0.9991         | 9.71      |
| LHS/DBSb3-mh | 48.31                            | 0.9994         | 67.01                       | 0.9992         | 172.18    |
| LHS/DBSb3-m  | 1.82                             | 0.9973         | 2.36                        | 0.9791         | 3.51      |

<sup>a</sup>Total BET area (m<sup>2</sup> g<sup>-1</sup>); <sup>b</sup>correlation coeficient BET; <sup>c</sup>surface area (m<sup>2</sup> g<sup>-1</sup>); <sup>d</sup>correlation coeficient; <sup>e</sup>pore volume (10<sup>-3</sup> cm<sup>3</sup> g<sup>-1</sup>).