SI

On the Search for Potential Antimycobacterial Drugs: Synthesis of Naphthoquinoidal, Phenazinic and 1,2,3-Triazolic Compounds and Evaluation Against *Mycobacterium tuberculosis*

Guilherme A. M. Jardim,^a Eduardo H. G. Cruz,^a Wagner O. Valença,^{a,d} Jarbas M. Resende,^a Bernardo L. Rodrigues,^b Daniela F. Ramos,^c Ronaldo N. Oliveira,^d Pedro E. A. Silva^{c,*} and Eufrânio N. da Silva Júnior^{a,*}

^aLaboratório de Química Sintética e Heterocíclica and ^bLaboratório de Cristalografia, Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte-MG, Brazil

^cLaboratório de Micobacterias, Faculdade de Medicina, Universidade Federal do Rio Grande, 96200-190 Rio Grande-RS, Brazil

^dDepartamento de Ciências Moleculares, Universidade Federal Rural de Pernanbuco, 52171-900 Recife-PE, Brazil

Compound 4

Figure S1. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 4.

*e-mail: pedrefurg@gmail.com; eufranio@ufmg.br This article is part of the Special Issue Rare and Neglected Diseases -Vol. 25, No. 10 (2014).

Figure S3. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 5.

Figure S5. ESI-MS of compound 5.

Figure S6. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 6.

Figure S7. ¹³C-APT NMR spectrum (75 MHz, CDCl₃) of compound 6.

Figure S8. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 7.

Figure S9. ¹³C-APT NMR spectrum (75 MHz, CDCl₃) of compound 7.

Figure S10. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 8.

Figure S11. ¹³C-APT NMR spectrum (75 MHz, CDCl₃) of compound 8.

Figure S12. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 9.

Figure S13. ¹³C-APT NMR spectrum (75 MHz, CDCl₃) of compound 9.

Figure S14. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 10.

Figure S15. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 10.

Figure S16. ESI-MS of compound 10.

Compound 11

Figure S17. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 11.

Figure S18. 13 C NMR spectrum (50 MHz, CDCl₃) of compound 11.

Figure S19. ESI-MS of compound 11.

Figure S20. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 12.

Figure S21. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 12.

Figure S22. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 13.

Figure S23. ¹³C NMR spectrum (100 MHz, CDCl₃:DMSO-*d*₆) of compound 13.

Jardim et al.

Figure S24. ¹³C-DEPT NMR spectrum (100 MHz, CDCl₃) of compound 13.

Figure S25. ESI-MS of compound 13.

Figure S27. ¹³C NMR spectrum (100 MHz, CDCl₃, DMSO-*d*₆) of compound 14.

Figure S28. ESI-MS of compound 14.

Compound 15

Figure S29. ¹H NMR spectrum (400 MHz, $CDCl_3$) of compound 15.

Figure S30. ¹³C NMR spectrum (100 MHz, CDCl₃, DMSO-*d*₆) of compound 15.

Figure S31. ESI-MS of compound 15.

Figure S32. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 18.

Figure S33. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 18.

Figure S34. ESI-MS of compound 18.

Compound 19

Figure S35. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of compound 19.

Jardim et al.

Compound 20

Figure S37. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 20.

Compound 21

Figure S39. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 21.

Jardim et al.

Figure S40. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 21.

Figure S41. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 22.

Figure S42. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 22.

Compound 23

Figure S43. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 23.

Compound 24

Figure S45. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 24.

Compound 25

Figure S47. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 25.

Figure S49. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 26.

Figure S50.¹³C NMR spectrum (100 MHz, CDCl₃) of compound 26.

Figure S51. ¹³C-DEPT NMR spectrum (100 MHz, CDCl₃) of compound 26.

Figure 52. ESI-MS of compound 26.

Compound 27

Figure S53. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 27.

Figure S54. ESI-MS of compound 27.

Compound 28

Figure S55. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 28.

Figure S57. ESI-MS of compound 28.

Figure S58. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 29.

S30

Figure S60. ESI-MS of compound 29.

Compound 30

Figure S61. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 30.

Figure S63. ESI-MS of compound 30.

Figure S64. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 31.

Figure S66. ¹H NMR spectrum (200 MHz, CDCl₃) of compound **32**.

Figure S67. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 32.

Figure S68. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 33.

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S71. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound **34**.

Figure S72. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 35.

S37

Figure S74. ESI-MS of compound 35.

Figure S75. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 36.

Figure S77. ESI-MS of compound 36.

Figure S78. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 37.

S40

Figure S80. ESI-MS of compound 37.

Compound 38

Figure S81. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 38.

Figure S82. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 38.

Figure S83. ESI-MS of compound 38.

Figure S84. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 41.

S43

Figure S86. ESI-MS of compound 41.

Compound 42

Figure S87. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 42.

Figure S88. ESI-MS of compound 42.

Figure S89. $^1\!\mathrm{H}$ NMR spectrum (400 MHz, CDCl₃) of compound 43.

Figure S90. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 43.

Figure S91. ESI-MS of compound 43.

Figure S92. ¹H NMR spectrum (400 MHz, DMSO- d_6) of compound 45.

Figure S93. ¹³C NMR spectrum (100 MHz, DMSO- d_6) of compound 45.

Figure S94. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound 46.

Figure S95. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound 46.

Figure S96. ¹H NMR spectrum (400 MHz, DMSO- d_6) of compound 47.

Figure S97. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound 47.

Figure S100. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 49.

Figure S101. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 49.

Figure S102. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound 50.

Figure S103. ¹³C NMR spectrum (100 MHz, DMSO- d_{δ}) of compound 50.

Figure S104. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound 51.

Figure S105. ¹³C NMR spectrum (100 MHz, DMSO- d_6) of compound 51.

Figure S109. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 53.

Figure S111. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 54.

Figure S112. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound 55.

Figure S113. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 55.

Figure S114. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound 56.

Figure S115. ¹³C NMR spectrum (100 MHz, DMSO- d_6) of compound 56.

Figure S116. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound 57.

Figure S117. ¹³C NMR spectrum (100 MHz, DMSO- d_6) of compound 57.

Figure S118. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound 58.

Figure S119. ¹³C NMR spectrum (100 MHz, DMSO- d_{δ}) of compound 58.

Figure S120. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 59.

Figure S121. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 59.

Table S1. Crystal data and structure refinement for the compounds 12, 19 and 29

Identification code	Compound 12		Compound 19		Compound 29	
Empirical formula	$C_{29}H_{21}Br_2N_5O$		$C_{22}H_{17}N_{3}O_{3}$		$C_{29}H_{23}N_5O_2$	
Formula weight	615.33		371.39		473.52	
Temperature / K	293(2)		293(2)		293(2)	
Wavelength / Å	0.71073		0.71073		1.5418	
Crystal system	orthorombic		orthorombic		monoclinic	
Space group	P2 ₁ 2 ₁ 2 ₁		P2 ₁ 2 ₁ 2 ₁		$P2_1/c$	
Unit cell dimensions	a = 5.9458(3) Å	$\alpha = 90^{\circ}$	a = 5.410 Å	$\alpha = 90^{\circ}$	a = 5.0697 (10) Å	$\alpha = 90^{\circ}$
	b = 17.8994(8) Å	$\beta = 90^{\circ}$	b = 12.669 Å	$\beta = 90^{\circ}$	b = 24.245 (5) Å	$\beta = 92.69(3)$
	c = 24.1333(17) Å	$\beta = 90^{\circ}$	c = 25.696 Å	$\beta = 90^{\circ}$	c = 19.173 (4) Å	$\beta = 90^{\circ}$
Volume / Å ³	2568.4(3)		1761.2		2354.0 (8)	
Z	4		4		4	
Density (calculated) / mg m ⁻³	1.591		1.401		1.336	
Absorption coefficient / mm-1	3.189		0.095		0.70	
F(000)	1232		776		992	
Crystal size / mm ³	$0.20\times0.08\times0.07$		$0.80\times0.50\times0.12$		$0.43 \times 0.07 \times 0.06$	
Theta range for data collection	2.04 to 29.54 $^{\circ}$		1.79 to 29.33°		2.9 to 66.0°	
Index ranges	$-7 \le h \le 7, -24 \le k \le 16,$ $-31 \le 1 \le 20$		$-7 \le h \le 7, -17 \le k \le 15, -35 \le 1 \le 34$		$-5 \le h \le 4, -28 \le k \le 28,$ $-22 \le l \le 22$	
Reflections collected	9550		13943		26157	
Independent reflections	5668 [R(int) = 0.0259]		4356 [R(int) = 0.0324]		$4078[R_{\rm int} = 0.092]$	
Completeness to theta = 26.32°	99.9%		94.6%		-	
Absorption correction	empirical		none		-	
Refinement method	full-matrix least-squares on F2		full-matrix least-squares on F2		full-matrix least-squares on F2	
Data / restraints / parameters	5668 / 0 / 336		4356 / 0 / 255		4078 /0 /326	
Goodness-of-fit on F2	1.134		1.108		1.058	
Final R indices [I > 2sigma(I)]	R1 = 0.0393, wR2 = 0.0768		R1 = 0.0410, wR2 = 0.0909		R1 = 0.0501, wR2 = 0.1222	
R indices (all data)	R1 = 0.0623, wR2 = 0.1001		R1 = 0.0538, wR2 = 0.1060		R1 = 0.0774, wR2 = 0.1442	
Absolute structure parameter	0.000(10)		1.2(11)		-	
Largest diff. peak and hole / e.Å-3	0.321 and -0.389		0.218 and -0.243		0.210 and -0.188	