Investigation of the Interaction of 2-(2'-Hydroxyphenyl)-benzoxazoles and their Derivatives with B-DNA by Docking and Molecular Dynamics

Fábio dos S. Grasel,* Tiago E. de Oliveira and Paulo A. Netz*

Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, 91501-970 Porto Alegre-RS, Brazil

Figure S1. Relative energy (kcal mol⁻¹) × dihedral angle (degrees) obtained for the ligands 1b and 2b (left) and 1c and 2c (right) in vacuum and the aqueous medium (DFT/B3LYP with the basis set 6-31G (d)).

Figure S2. Interaction energy (Auto Dock) of the ligands with the B-DNA (X3DNA) and the average interaction energy (---).

^{*}e-mail: fsgrasel@gmail.com or netz@iq.ufrgs.br

	Interaction type		
Ligand	Interaction energy / (kcal mol ⁻¹)	(%)	
	-7.08	Minor groove (46)	
	-7.01	Minor groove (2)	
1-	-6.83	Intercalation (28)	
la	-6.70	Intercalation (6)	
	-6.65	Intercalation (17)	
	-6.63	Intercalation (1)	
	-7.22	Minor groove (20)	
	-6.95	Intercalation (45)	
	-6.88	Intercalation (13)	
la	-6.72	Minor groove (15)	
	-6.31	Intercalation (1)	
	-6.26	Intercalation (5)	
	-5.72	Minor groove (1)	
	-5.38	Minor groove (33)	
	-5.15	Minor groove (5)	
L	-5.07	Intercalation (23)	
D	-5.05	Intercalation (35)	
	-4.95	Intercalation (2)	
	-4.70	Intercalation (2)	
	-6.45	Intercalation (70)	
1	-6.20	Minor groove (27)	
20	-6.12	Intercalation (2)	
	-5.65	Minor groove (1)	
	-6.01	Minor groove (46)	
	-5.92	Minor groove (8)	
-	-5.75	Intercalation (14)	
lc	-5.73	Intercalation (20)	
	-5.63	Intercalation (2)	
	-5.59	Intercalation (10)	
	-6.17	Intercalation (28)	
	-5.98	Minor groove (49)	
	-5.62	Intercalation (19)	
æ	-5.25	Minor groove (1)	
	-5.23	Intercalation (2)	
	-4.58	Minor groove (1)	

Table S1. Results of molecular docking calculations, analyzed by clusters as shown in Figure S2

Figure S3. Number of hydrogen bonds of ligands with DNA throughout the simulation.

System evaluated	RMSD
B-DNA	0.20 ± 0.04
1aI	0.39 ± 0.12
1aG	0.28 ± 0.04
2aI	0.37 ± 0.12
2aG	0.30 ± 0.03
1bI	0.36 ± 0.08
1bG	0.28 ± 0.03
2bI	0.29 ± 0.05
2bG	0.30 ± 0.04
1cI	0.35 ± 0.05
1cG	0.32 ± 0.04
2cI	0.37 ± 0.10
2cG	0.33 ± 0.04

Table S2. Average values of the RMSD parameter for all base-pair steps (BPS). Results for the oligonucleotide without ligand (B-DNA), intercalation and minor groove binding mode complexes

Figure S4. Rise parameter for some relevant base-pair steps for the intercalation binding mode complexes.

Grasel et al.

Figure S5. Rise parameter for the base-pair step AATT for the minor groove binding mode complexes.

Figure S6. Rise parameter for some relevant base-pair steps for the minor groove binding mode complexes.

BPS	Exp. ³⁰	B-DNA	1aG	2aG	1bG	2bG	1cG	2cG
CGCG1	3.36 ± 0.01	3.35 ± 0.41	3.36 ± 0.37	3.64 ± 0.43	3.67 ± 0.39	3.39 ± 0.37	3.40 ± 0.74	3.60 ± 0.41
GCGC1	3.38 ± 0.08	3.34 ± 0.24	3.39 ± 0.20	3.29 ± 0.24	3.47 ± 0.20	3.46 ± 0.18	3.40 ± 0.23	3.43 ± 0.21
CGCG2	3.26 ± 0.05	3.19 ± 0.33	3.11 ± 0.29	3.33 ± 0.54	3.10 ± 0.28	3.08 ± 0.28	3.16 ± 0.26	3.11 ± 0.33
GATC	3.30 ± 0.10	3.44 ± 0.21	3.45 ± 0.22	3.26 ± 0.25	3.44 ± 0.21	3.44 ± 0.21	3.44 ± 0.20	3.45 ± 0.21
AATT	3.27 ± 0.02	3.37 ± 0.20	3.34 ± 0.20	3.30 ± 0.19	3.34 ± 0.19	3.30 ± 0.19	3.30 ± 0.20	3.39 ± 0.19
ATAT	3.31 ± 0.03	3.37 ± 0.18	3.28 ± 0.20	3.28 ± 0.16	3.32 ± 0.18	3.36 ± 0.17	3.37 ± 0.19	3.20 ± 0.17
TTAA	3.29 ± 0.01	3.32 ± 0.21	3.37 ± 0.21	3.25 ± 0.18	3.46 ± 0.22	3.51 ± 0.21	3.40 ± 0.20	3.22 ± 0.18
TCGA	3.14 ± 0.02	3.36 ± 0.21	3.61 ± 0.31	3.51 ± 0.21	3.49 ± 0.20	3.48 ± 0.20	3.41 ± 0.22	3.57 ± 0.21
CGCG3	3.56 ± 0.07	3.24 ± 0.31	3.20 ± 0.27	3.61 ± 0.29	3.10 ± 0.30	3.18 ± 0.22	3.33 ± 0.26	3.62 ± 0.25
GCGC2	3.21 ± 0.18	3.45 ± 0.20	3.34 ± 0.24	3.24 ± 0.30	3.50 ± 0.19	3.38 ± 0.18	3.17 ± 0.25	3.24 ± 0.23
CGCG4	3.54 ± 0.19	3.47 ± 0.44	3.43 ± 0.40	2.73 ± 0.24	3.79 ± 0.37	3.38 ± 0.57	3.43 ± 0.35	3.40 ± 0.32

Table S3. Average values of the Rise parameter for all base-pair steps (BPS). Sequence-dependent experimental results are shown, along with the simulation results for the oligonucleotide without ligand (B-DNA) and minor groove binding mode complexes

Figure S7. Roll parameter for some relevant base-pair steps for the intercalation binding mode complexes.

Figure S8. Roll parameter for some relevant base-pair steps for the minor groove binding mode complexes.

Table S4. Average values of the Roll parameter for all base-pair steps (BPS). Results for the oligonucleotide without ligand (B-DNA) and minor groove binding mode complexes

BPS	B-DNA	1aG	2aG	1bG	2bG	1cG	2cG
ATAT	-0.58 ± 3.31	_	-	_	_	0.21 ± 3.99	_
TTAA	2.51 ± 4.13	_	-	2.01 ± 3.59	2.83 ± 3.63	1.43 ± 3.63	1.53 ± 4.72
TCGA	1.74 ± 4.52	1.88 ± 4.54	0.52 ± 3.34	0.77 ± 4.29	1.08 ± 4.04	2.27 ± 4.86	1.28 ± 3.79
CGCG3	8.11 ± 5.04	6.53 ± 4.80	5.63 ± 5.06	9.75 ± 4.70	10.15 ± 4.06	-	7.48 ± 4.83
GCGC2	-1.93 ± 4.88	-0.32 ± 4.83	-0.49 ± 4.34	_	-	-	_