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Este artigo apresenta um método baseado em imagem digital e análise multivariada para 
classificação de sementes de mamona com respeito ao tipo de cultivar. Para este propósito, dois 
grupos de sementes comumente empregadas nas plantações brasileiras foram avaliados: cultivares 
BRS Nordestina e BRS Paraguaçu (grupo I), cultivar BRS Energia e o genótipo CNPA 2009-7 
(grupo II). Imagens destes dois grupos foram registradas usando uma webcam e a distribuição 
de frequência de índices de cores nos canais vermelho-verde-azul, matiz, saturação, intensidade 
e tons de cinza foi obtida. A análise discriminante pelos mínimos quadrados parciais (PLS-DA) 
e análise discriminante linear foram aplicadas separadamente para cada grupo de semente. Os 
melhores resultados foram obtidos usando o modelo PLS-DA, o qual classificou corretamente 
97,5% e 98,8% das amostras de predição para o grupo I e II, respectivamente. O método proposto 
é simples, rápido, não destrutivo e de baixo custo.

This paper presents a method based on digital imaging and multivariate analysis for the 
classification of castor seeds with respect to the cultivar type. For this purpose, two seed groups most 
commonly employed on Brazilian plantations were evaluated: BRS Nordestina and BRS Paraguaçu 
cultivars (group I) and BRS Energia cultivar and CNPA 2009-7 genotype (group II). Images of 
these two different seed groups were recorded from a webcam and the frequency distribution of 
color indexes in the red-green-blue (RGB), hue (H), saturation (S), intensity (I), and grayscale 
channels were obtained. Pattern recognition methods based on partial least squares-discriminant 
analysis (PLS-DA) and linear discriminant analysis (LDA) were applied separately to each seed 
group. The best results were obtained by using the PLS-DA model, which correctly classified 
97.5% and 98.8% of the prediction samples for groups I and II, respectively. The proposed method 
is simple, fast, non-destructive and non-expensive. 
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Introduction

The castor plant (Ricinnus communis L.) belongs to the 
Euphorbiáceas family, which includes a large number of 
plants from tropical regions.1,2 The oil is the main product 
extracted from castor seed, which has a high ricinoleic acid 
content with levels in the range of 78.3-90.0% (m/m).3,4 
This makes the oil soluble in alcohols with low molecular 
weight.5-7

Ricinoleic acid has three functional groups: primary 
carboxylic, unsaturated in C9, and hydroxyl in C12.8,9 These 
are used with products such as lubricants, pharmaceutical 
and polymeric products, synthetic fibers, and biodegradable 
plastics.10,11

The high price of castor oil, insufficient raw materials 
in the international market and growing demand for 
biodegradable products obtained from ricinoleic acid, 
have encouraged public and private companies to develop 
castor seed cultivars with high oil content. They are 
looking for high quality castor seeds with respect to 
germination, vigor, seeds sanity, and seeds free from 
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contamination of pathogens (fungi, bacteria, nematodes 
and insects).12

To obtain seeds with high genetic quality, it is 
necessary to implement breeding programs that seek 
superior characteristics and classes of uniform and distinct 
genotypes.13,14 Castor seeds have different morphological 
characteristics: size, shape, color, mass, oil content, among 
others. Because of these differences, it is not possible to use 
simple measures to identify these characteristics in order 
to classify cultivars or genotypes.15

As example, Figure 1 shows two distinct groups of 
castor seeds separated by their morphological similarities. 
Group I consists of the BRS Nordestina and BRS Paraguaçu 
cultivars. They are seeds of larger size, dark in color and 
have a high oil content (48% m/m). Group II (consisting 
of the BRS Energia cultivar and CNPA 2009-7 genotype) 
has seeds with different morphological characteristics from 
those shown in group I. The seeds of these cultivars are 
the most commonly used in Brazilian planting. Despite 
the visual similarity of the seeds in each group, as seen 
in Figure 1, these cultivars have different phenotypic 
characteristics, which impact the handling of their planting 
and the market value of the seeds. 

When the seeds have similar morphological profiles, 
the identification of cultivars can be carried out by planting 
the seed and waiting for the germination and development 
of the plant for at least 30 days, when it can be identified. 
As an alternative, the use of molecular markers based on 
DNA analysis16-18 can be employed, but these techniques are 
destructive, time-consuming and cannot be easily employed 
for routine identifications.

A previous work19 proposed the use of near-infrared 
(NIR) diffuse reflectance spectroscopy and chemometrics 
to classify 150 samples of castor seeds with respect to 
cultivar type (BRS Nordestina and BRS Paraguaçu). 
Two classification methods were compared, namely soft 

independent modeling of class analogies (SIMCA) and 
partial least square-discriminant analysis (PLS-DA). The 
better results were obtained by using PLS-DA, which 
correctly classified all test samples. That work, however, 
still entailed the use of expensive instruments.

An alternative to NIR spectroscopy is the use of 
methods based on digital imaging, which involves simpler 
and cheaper equipment. 

Mondo et al.20 analyzed the efficiency of the seed vigor 
image system (SVIS) evaluating priming protocols for 
lettuce seed. SVIS was also employed by Gomes-Junior 
et al.21 in order to analyze sweet corn. 

Frequency distribution of color indexes in the red, green 
and blue (RGB), the hue, saturation and intensity (HSI) and 
the grayscale channels associated with multivariate analysis 
have been explored in a number of works.22-24 Diniz et al.22 
classified tea samples with respect to geographical origin 
by using digital imaging and linear discriminant analysis. 
Ahmed et al.23 used digital images to classify crops and 
weeds in the field by using classification models based on 
support vector machines (SVM). Recently, Milanez and 
Pontes24 classified vegetable oil samples according to type 
and conservation state by using images obtained from a 
webcam and the frequency distribution of color indexes in 
the RGB, HSI and grayscale channels. Linear discriminant 
analysis (LDA) was applied to histogram data in order to 
build classification models on the basis of a reduced subset 
of variables.

In recent years, little has been investigated about the 
use of digital images and multivariate analysis for the 
purpose of seed classification.25-27 Dana and Ivo25 identified 
flax cultivars according to their commercial similarity by 
using principal component analysis (PCA) and high content 
analysis (HCA). Medina et al.26 also applied PCA and HCA 
to identify quinoa seeds according to their geographical 
origin. Pourreza et al.27 classified nine varieties of Iranian 
wheat seeds using LDA coupled to a stepwise algorithm.

It is important to emphasize that works involving the use 
of digital images with pattern recognition methods for castor 
seed classification have not been found in the literature.

In the present paper, a methodology is proposed based 
on digital imaging data and supervised pattern recognition 
techniques for the classification of individual castor seeds 
with respect to four cultivar types: BRS Nordestina, BRS 
Paraguaçu, BRS Energia and CNPA 2009-7. For this 
purpose, the frequency distribution of color indexes in 
the red (R), green (G), blue (B), hue (H), saturation (S), 
intensity (I), and grayscale channels were obtained from 
digital images. Classification models based on PLS-DA 
and LDA were built and compared in terms of the correct 
classification rate (CCR) for the prediction set.

Figure 1. Castor seeds from (a) BRS Nordestina and BRS Paraguaçu 
cultivars (group I) and (b) BRS Energia and CNPA 2009-7 genotype 
(group II).
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Experimental

Materials and methods

Samples
A total of 400 castor seed samples from different cultivars 

(group I: BRS Nordestina: 100 and BRS Paraguaçu: 100; 
group II: BRS Energia: 100 and CNPA 2009-7: 100) were 
collected from the Embrapa Algodão localized in Campina 
Grande, Paraíba, Brazil. In order to have a representative 
data set, samples were collected at different periods of the 
year. The samples were stored with a temperature controlled 
at 23 ± 1 °C and relative humidity of 65%.

Apparatus
Figure 2 shows the system used for the acquisition 

images of the castor seed samples. These comprise a (a) 
compartment, (b) fluorescent lamp, (c) webcam, (d) Teflon® 
support, and (e) notebook.

A 30 cm × 22 cm × 23 cm open-sided box was built in 
order to facilitate the control of the light striking the seeds, 
ensuring quality and uniformity for the image acquisition. 
The box was open at the top, but a sheet of office paper 
was placed over it to diffuse the light coming from a spiral, 
6 W, 4000 K white colored fluorescent lamp which was 
placed 16.0 cm above the samples in the box. The inside 
of the back of the box was also lined with white office 
paper.28 The front of the box had a sliding door, to facilitate 
seed placement and removal. During the photo shooting, 
this door remained closed to prevent interference with the 
experimental lighting system. 

Inside the box, a Teflon® cell (diameter and length of 
4.7 cm and 10.5 cm, respectively) was placed to support 
the seed samples, together with a Microsoft webcam with 
HD resolution (1280 × 720). The webcam was positioned 
at a distance of 2.5 cm from the seed samples. 

Digital image acquisition

Five sequential images for each castor seed sample 
were recorded and stored in JPEG format. The recorded 
images contain 24-bit (16.7 million colors) and a spatial 
resolution of 2880 × 1620 pixels. A region with an ellipse 
format at the center of each image was maintained constant 
throughout the analysis. Using only the selected region 
of the images, the frequency distributions (histogram) 
of color indexes according to each color channel were 
obtained for each of the five images. Then, the average 
of the five histograms was calculated, for use in all 
chemometric procedures. It is important to mention that, 
to obtain these histograms, three models for the color of 
a pixel were used in this study, namely: RGB standard, 
HSI and grayscale system. Each color component of the 
models is composed of 256 tones, varying from 0 to 255 
for each channel.

Chemometric procedure and software

The data matrix is formed by samples located in rows, 
while the columns represent the color levels obtained for 
each color component.

The analytical information contained in the histograms 
was used separately for each seed group. In the first case, 
models were built in order to identify the BRS Nordestina 
and BRS Paraguaçu cultivars, which belonged to group I. 
After that, the discrimination between the BRS Energia 
cultivars and the CNPA 2009-7 genotype (belonging to 
group II) was performed.

Raw histograms and some pre-processing strategies 
such as auto-scaling and standard normal variate (SNV) 
were evaluated in terms of overall classification errors.

PCA was applied to the overall data set to observe 
the natural groupings of the castor seed samples, in an 
exploratory analysis.

The Kennard-Stone (KS)29 algorithm was employed 
to divide the data set into training (60%), and test (40%) 
subsets. This procedure was applied separately to each 
cultivar type. The training set was used to calibrate the 
PLS-DA and LDA/successive projections algorithm (SPA) 
models, whereas test samples were only used in the final 
stage to evaluate the true predictive ability of the calibrated 
model.

The threshold values adopted for PLS-DA models were 
calculated on the basis of the Bayes theorem.30 As described 
by Ballabio,31 the threshold is selected at the point where the 
number of false positives and false negatives is minimized. 
Leave-one-out cross validation was employed to determine 
the optimal number of factors in the PLS-DA models.

Figure 2. System used in the acquisition of images of the castor seed 
samples. (a) Open-topped box, (b) fluorescent lamp, (c) webcam, (d) 
Teflon® support and (e) notebook. 
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The use of LDA for classification of the high-
dimensional data usually requires appropriate variable 
selection procedures. In the present paper, the SPA32,33 
based on the criterion recently proposed by Soares et al.34 
is employed as variable selection tool for the LDA models. 

All calculations were carried out by using MATLAB® 
2010a software.

Results and Discussion

Histograms

Figure 3 shows the average histograms for the castor 
seed samples acquired with color indexes in the gray scale, 
red, green, blue, hue, saturation and intensity channels. It 
is important to mention that each color component of the 
models is composed of 256 tones, varying from 0 to 255 
for each channel. Variables that had a response equal to 
zero were removed from the data set.

As can be seen in Figure 3a and 3b, samples belonging 
to group I have a different histogram profile when compared 
with samples of group II. In fact, seeds of these two groups 
have a different physical appearance (Figure 2). In contrast, 
when the samples within the group are compared, it becomes 
difficult to distinguish them based on a visual inspection 
of histograms and seeds. For this reason, the multivariate 
methods were applied separately to each seed group.

Principal component analysis

In order to observe the existence of natural groupings 
of castor seeds types, an exploratory analysis of data was 
performed. For this purpose, PCA was applied separately 
for each histogram data set (group I and group II). Figure 4a 

presents score plots resulting from the application of PCA 
to histograms of BRS Nordestina and BRS Paraguaçu castor 
seeds. As can be seen in Figure 4a, the BRS Nordestina 
class can be distinguished from the BRS Paraguaçu class 
along PC1 (42%) and PC2 (12%) axes. Figure 4b presents 
the score plot resulting from the application of PCA to 
histograms of BRS Energia and CNPA 2009-7 cultivars. 
In this case, a trend of separation of these two cultivars is 
found along the PC1 axis. More specifically, CNPA 2009-7 
samples presented more positive score values along the PC1 
axis, when compared with BRS Energia samples. However, 
an overlapping of some samples is still found along the PC1 
(28%) and PC2 (23%) axes.

Classification models

In order to verify the discriminatory capacity of the 
different channels, classification models based on PLS-DA 
and LDA with variable selection by SPA were developed 
using individual and combined channels for each seed 
group. The classification performances of these methods 
are evaluated in terms of CCR obtained in the training set. 
The best results were achieved with the raw histogram 
(without preprocessing). Table 1 summarizes the results, 
both for group I and group II. 

For both seed groups, the best results were found using 
the PLS-DA models. More specifically for group I, the 
RGB-HSI channels were those which achieved the highest 
CCR when PLS-DA was applied. For LDA, however, the 
combination of all channels (RGB, HSI and grayscale) 
resulted in a smaller number of errors. 

In the case of group II, the PLS-DA model correctly 
classified 108 out of the 120 training samples also using 
all the channels. By using the LDA/SPA method, the best 

Figure 3. Average histograms of the castor seed samples belonging to (a) group I and (b) group II. R: red; G: green; B: blue; H: hue; S: saturation and 
I: intensity.
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performance was achieved by using the red channel. Thus, 
classification models built with those channels that provided 
the best results for the training set were, then, applied to 
the prediction set.

All images of misclassified samples were evaluated, but 
it was not possible to identify the presence of abnormalities 
based on a visual inspection. This reinforces the need for 
the use of multivariate methods.

Figure 5 presents the average histograms with selected 
variables by SPA (for both seed groups). In the first group 

(Figure 5a), only three variables were selected. Such 
variables are located in the gray and hue channels. In fact, 
in these channels, a higher discrimination between the 
histograms of BRS Nordestina and BRS Paraguaçu classes 
is found (as shown in Figure 2). In the case of group II, 
seven variables were selected by the SPA algorithm for 
building the models. These variables are located along the 
red channel.

Figure 6 shows the plot of the Fisher discriminant scores 
obtained by using the variable selected by SPA. It is worth 

Table 1. Correct classification rates obtained with LDA/SPA and PLS/DA models for the training set

Correct classification rate / %

Group I Group II

Channel LDA/SPA PLS/DA LDA/SPA PLS/DA

Gray-RGB-HSI 96.7 (3) 96.7 (4) 78.3 (6) 90.0 (5)

Gray 84.2 (6) 81.7 (3) 83.3 (5) 81.7 (3)

RGB 85.0 (4) 88.3 (9) 79.2 (7) 85.0 (9)

HSI 91.7 (3) 95.8 (11) 77.5 (5) 85.8 (4)

Gray-RGB 86.7 (4) 87.5 (8) 82.5 (5) 85.0 (3)

Gray-HSI 93.3 (3) 95.8 (5) 79.2 (4) 87.5 (5)

RGB-HSI 94.2 (3) 98.3 (5) 76.7 (6) 88.3 (5)

Red 82.5 (2) 85.0 (2) 85.8 (7) 86.7 (2)

Green 84.2 (6) 82.5 (4) 75.0 (4) 82.5 (5)

Blue 88.3 (8) 83.3 (2) 75.0 (5) 72.5 (5)

Hue 95.0 (2) 95.8 (17) 75.8 (5) 84.2 (13)

Saturation 94.2 (3) 95.8 (9) 80.3 (9) 80.0 (11)

Intensity 84.2 (4) 85.0 (4) 85.3 (8) 85.0 (2)

Figure 4. PC1 × PC2 score plots for the overall set of castor seed samples of (a) group I and (b) group II. : BRS Nordestina; : BRS Paraguaçu; ♦: BRS 
Energia and : CNPA 2009-7.
Figure 4. PC1 × PC2 score plots for the overall set of castor seed samples of (a) group I and (b) group II. : BRS Nordestina; : BRS Paraguaçu; ♦: BRS 
Energia and : CNPA 2009-7.
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mentioning that an LDA model generates a number of 
discriminant functions equal to the number of classes under 
consideration minus one. Thus, in the present study, only 
one discriminant function (DF1) was generated for the two 
classes of each seed group. As can be seen, the separation 
between the classes is more apparent when compared with 
the PC score plots as presented in Figures 4a and 4b.

Table 2 presents the detailed classification results 
obtained by the LDA/SPA and PLS-DA models in 
the prediction set. This table expresses both correct 
classifications (predicted class equal to correct class) and 
incorrect classifications (predicted class different from 
correct class). 

As can be seen in Table 2, the LDA/SPA and PLS-DA 
models presented satisfactory classification performances 

when applied to prediction sample set. In both groups, 
the PLS-DA method achieved a correct classification rate 
slightly higher than the LDA/SPA method. In particular, for 
group II, only one sample belonging to class BRS Energia 
was classified as belonging to class CNPA 2009-7, when the 
PLS-DA method was employed. This outcome corresponds 
to a correct prediction rate of 98.8%.

Conclusions

This paper presented a method based on digital imaging 
and non-supervised and supervised pattern recognition 
techniques for the classification of individual castor seeds 
from BRS Nordestina, BRS Paraguaçu, BRS Energia 
cultivars and CNPA 2009-7 genotype. 

Figure 5. Average histograms with variables selected by SPA. (a) Group I when all channels were evaluated and (b) group II when red channel was evaluated. 

Figure 6. DF1 score plots for the overall data set using variables selected by SPA. (a) group I and (b) group II. : BRS Nordestina; : BRS Paraguaçu; 
: BRS Energia and : CNPA 2009-7.
Figure 6. DF1 score plots for the overall data set using variables selected by SPA. (a) group I and (b) group II. : BRS Nordestina; : BRS Paraguaçu; 
: BRS Energia and : CNPA 2009-7.
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A PCA study applied to the histogram data revealed a 
trend of separation of two cultivars from each seed group 
evaluated. When supervised recognition methods were 
used, the better results were obtained from the PLS-DA 
model, which correctly classified 97.5% and 98.8% of 
prediction samples for groups I and II, respectively.

The proposed system is simple, non-destructive, fast 
and non-expensive and can be adopted both by inspection 
agencies to identify fraud and mixtures of these four types 
of castor seeds, as well as by companies that sell seeds 
and/or are involved in genetic improvement programs. It 
is important to mention that the classification procedure is 
data-driven. Thus, the results cannot be easily generalized 
to the analysis of other seed types that were not included 
in the study.
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