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Este trabalho propõe a otimização multivariada de um procedimento para determinação de 
cádmio em amostras de chorume usando-se espectrometria de absorção atômica com chama após a 
extração em fase sólida usando-se uma minicoluna empacotada com Amberlite XAD-4 modificada 
com ácido 3,4-diidróxibenzoico. As variáveis relacionadas à pré-concentração (pH, razão de 
amostragem e concentração do tampão) foram otimizadas usando-se planejamento Doehlert. 
Duas ferramentas para modelagem estatística (regressão por mínimos quadrados e redes neurais 
artificiais) foram aplicadas aos dados e seus desempenhos foram comparados. Procedimentos de 
digestão do chorume por aquecimento em meio ácido e por radiação ultravioleta foram avaliados 
sendo este último mais adequado para evitar a perda de Cd por volatilização. O procedimento 
desenvolvido apresentou um fator de enriquecimento de 9 vezes com limites de detecção e de 
quantificação (3sb) de 0,72 e 2,4 µg L-1, respectivamente, e precisão - expressa como porcentagem 
do desvio padrão relativo - de 4,0 e 6,4% (RSD%, n = 4 para 5,0 e 20,0 µg L-1, respectivamente). 
Testes de adição/recuperação de Cd foram realizados obtendo-se valores entre 97 e 112%. 
O procedimento foi aplicado na determinação de cádmio em amostras de chorume coletadas no 
aterro sanitário do município de Jaguaquara-BA, Brasil. 

This work proposes the use of multivariate optimization as a procedure for cadmium 
determination in leachate samples via flame atomic absorption spectrometry after solid phase 
extraction using a minicolumn packed with Amberlite XAD-4 modified with 3,4-dihydroxybenzoic 
acid. The variables related with the preconcentration (pH, sampling flow rate and buffer 
concentration) were optimized using Doehlert design. Two statistical modeling tools (least squares 
regression and artificial neural networks) have been applied to the data and their performances 
were compared. Digestion procedures of the leachate by heating in acid medium and ultraviolet 
radiation were evaluated being the latter more appropriate to prevent loss of Cd by volatilization. 
The developed procedure has promoted an enrichment factor of 9, with detection and quantification 
limits (3sb) of 0.72 and 2.4 µg L-1, respectively, and precision - expressed as relative standard 
deviation percentage - of 4.0 and 6.4% (RSD%, n = 4 for 5.0 and 20.0 µg L-1, respectively). 
Addition/recovery tests for Cd were carried out and values between 97 and 112% were obtained. 
The procedure was applied for cadmium determination in leachate samples collected at the sanitary 
landfill of Jaguaquara-BA, Brazil. 

Keywords: cadmium, landfill leachate, solid-phase extraction, Doehlert design, least squares 
regression, artificial neural network

Introduction

The production of a dark liquid called leachate is 
common in sanitary landfills. This residue results from the 
decomposition of waste mass plus the rainwater percolating 
into the landfill, and the trash moisture.1 The contamination 

of soil, air or water by composites such as the leachate 
is extremely harmful to the environment. Leachate can 
contain high concentrations of chemical compounds and 
potentially toxic metals that can modify the ideal conditions 
of the ecosystem.2

Cadmium concentrations can increase in the environment 
through the release of waste and/or contaminated effluents. 
Amongst the wastes with a contaminant potential those 
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resulting from the production of alloys, the manufacture 
of products containing Cd, batteries and leachate from 
sanitary landfills can be mentioned. Cadmium is very toxic 
to humans and other animals. Products containing Cd (inks, 
enamels and alloys) are possible sources of contamination 
to foods and beverages and can cause acute toxicity. Among 
the adverse health effects caused by exposure to this metal 
or its derivatives, the following are noteworthy: chronic 
lung diseases, emphysema, kidney disorders, anemia, liver 
and bone diseases, and others.3

Amongst the types of metals present in the complex 
matrix of leachate, Cd can hardly be quantified by flame 
atomization atomic absorption spectrometry (FAAS), 
since the quantification limit of the analytical technique is 
not sufficiently low. Furthermore, the difficulties increase 
with losses provoked by the volatility of this analyte when 
the sample is digested by heating in open systems, the 
low metal concentrations in the examined matrices, and 
the occurrence of matrix effects. So, the pretreatment of 
samples requires an effective preconcentration stage so 
as to lower the instrumental detection and quantification 
limits.4-6 This procedure allows quantifying Cd by FAAS, 
since the interfering substances are eliminated and the 
analyte is isolated from the matrix components at a higher 
concentration.5

Solid phase extraction (SPE) is one of the preconcentration 
methods commonly applied in environmental analyses. SPE 
methods are based on analyte sorption onto the solid surface 
of a determined material (commonly silica, XAD resins, 
polyurethane foam, etc., impregnated or modified with 
a complexing agent) followed by elution with adequate 
solvents.7 Solid phase extraction in minicolumns is a 
procedure that involves variables that must be optimized 
for each type of analyte and type of solid phase used such 
as pH, sample flow rate and buffer volume. Nowadays, 
multivariate optimization is used in this optimization, since 
it does not either require a great deal of experiments and 
reagents or consumes much time; in addition, it allows the 
evaluation of interactions between the different variables.8,9

As for the work involving SPE, the use of multivariate 
experimental design methodologies for response surface 
generation, such as the Doehlert design, is possible in the 
search for the optimum extraction conditions. The use of 
this methodology allows simultaneous improvements of the 
responses that are influenced by factor-level combinations. 
In the case of SPE, the major contributing factors in the 
extraction are pH, which is a key parameter in the retention 
of the analyte,10 sampling flow rate and buffer concentration. 
Fitting the mathematical functions to the results obtained 
by combining different levels of variables allows predicting 
the result as well as the influences of each factor in a given 

experiment. This type of methodology has advantages such 
as savings in time, materials and costs.11 In conjunction 
with the statistical techniques, the Doehlert matrix can 
be applied to generate response surfaces and study the 
behavior of the variables. This methodology allows finding 
the optimum conditions of an experiment. Essentially, the 
most efficient way is to look at a combination of factors 
which result in the best response of a process or in the best 
features of a product.12

Mathematical functions that generate response surfaces 
can be fitted to experimental data using the classical least 
square methodology or alternative methodologies, such as 
artificial neural networks (ANN). ANN provide an attractive 
possibility for providing non-linear modeling for response 
surfaces. In classical response surface methodology 
(RSM), the number of terms in the polynomial equation is 
limited to the number of experimental design points. On 
the other hand, ANN methodology allows the modeling of 
complex relationships without this limitation. Its analysis 
is quite flexible in regard to the number and form of the 
experimental data having better predictive power than 
regression models. Regression analyses are dependent 
on predetermined statistical significance levels, and less 
significant terms are usually not included in the model. 
With the ANN method, all data are used making the models 
more accurate.12,15

Accordingly, the objective of this study was to 
determine the Cd concentrations at trace level in landfill 
leachate samples through the development of an effective 
methodology that makes use of solid phase extraction and 
flame atomic absorption spectrometry. The response surfaces 
methodology, associated with least squares regression and 
artificial neural networks, was applied in the mathematical 
optimization and search of optimum values for the most 
significant variables in the preconcentration process.

Experimental

Instrumentation

Metal concentrations were measured using a Perkin 
Elmer AAnalyst 200 model flame atomic absorption 
spectrometer (Norwalk, USA) equipped with deuterium 
arc lamp for background correction. The hollow cathode 
lamp was used as a source of radiation at a wavelength 
of 228.8 nm for the spectral bandwidth of Cd. The flame 
composition for determining the studied metals was 
acetylene (flow rate: 2.0 mL min-1) and air (flow rate: 
13.5 mL min-1). The nebulizer flow rate was 5.0 mL min-1.

A peristaltic pump (MILAN) was used to control the 
flow rate of samples during solid-phase extraction. A 
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portable pHmeter ML 1010 (MISURA LINE) was used 
to measure the pH. A TE007MP block digester (Tecnal) 
with temperature control and a laboratory-made ultraviolet 
digester craft equipped with 20 W mercury low-pressure 
lamps (Mercury) were respectively used in the acid and 
ultraviolet digestion of leachate samples. An ultrasonic 
bath with controlled heating (Visque Model 1450A) was 
used to facilitate outgassing of the samples after digestion 
by ultraviolet radiation. 

Reagents and solutions

The reagents used were of analytical grade. Water 
was deionized with Elga purifier (model Purelab Classic). 
Working solutions of Cd were diluted from stock solutions 
of 1000 mg mL-1 (Merck). The pH of solutions was adjusted 
with acetate (pH 3.8 to 5.8), phosphate (pH 6.2 to 7.5), 
borate (pH 7.5 to 9.0) and ammoniacal (pH 10.0) buffer 
solutions. The solutions of nitric acid and hydrochloric acid 
were prepared from solutions of concentrated acid (Merck, 
Darmstadt, Germany). 

The working glassware was washed with deionized 
water after decontamination with nitric acid solution (10%) 
for 24 hours.

Sample collection

Leachate samples were collected from the sanitary landfill 
of Jaguaquara (lat. 13°31’51” S and long. 39°58’15” W)  
in the southwest region of Bahia, northeastern Brazil. 
Samples were collected from November 2011 to May 
2012. The leachate was collected directly into the primary 
reservoir where it is stored after passing through the 
collector arrays. The samples were stored in polyethylene 
flasks and were immediately taken to the laboratory for pH 
determination and placing in a refrigerator. All collection 
vials were subjected to triple washing with deionized water, 
kept in a nitric acid solution (5% v/v) for 24 hours and then 
rinsed again with deionized water. 

Optimization procedure

The Doehlert design matrix was applied in the 
optimization procedure for Cd preconcentration in 
leachate samples. The procedure consisted in the solid 
phase extraction (SPE) of the metal in a minicolumn 
packed with 0.1 g of a polymeric resin (Amberlite XAD-4) 
modified with 3,4-dihydroxybenzoic acid (DHB), elution 
and subsequent determination by FAAS. The variables 
optimized in the design were: pH, buffer concentration 
and flow rate sampling and their level combinations 

are presented in Table 1. All of the studied factors were 
explored on at least three levels. At the central point, three 
replicates were carried out for calculating the experimental 
error. The generated data were analyzed using Statistica 7 
software, and the experiments were performed in duplicate.

Cadmium solutions were prepared in 20 mL volumetric 
flasks to which a specific pH buffer was added along with 
the pre-established metal concentration of 30 µg L-1. After 
that, the analytes were eluted from the SPE column using 
1 mL of 1.0 mol L-1 HCl and transferred to vials for analysis 
by FAAS. 

Synthesis of XAD-4/DHB resin

This modified resin has been used before by our research 
group.13 Amberlite XAD-4 beads (5 g) were treated with 
10 mL of concentrated HNO3 and 25 mL of concentrated 
H2SO4 and the mixture stirred at 60 oC for 1 h in a water 
bath. Afterwards, the reaction mixture was poured into an 
ice-water mixture. The nitrated resin was filtered, washed 
repeatedly with water until free from acid and thereafter 
treated with a reducing mixture of 40 g of SnCl2, 45 mL 
of concentrated HCl and 50 mL of ethanol. The mixture 
was refluxed for 12 h at 90 oC. The solid precipitate was 
filtered and washed with water and 2 mol L-1 NaOH. The 
amino resin was first washed with 2 mol L-1 HCl and finally 
with distilled water to remove the excess of HCl. It was 
suspended in an ice-water mixture (150 mL) of 1 mol L-1 
HCl and 1 mol L-1 NaNO2. The diazotized resin was 
filtered, washed with ice-cold water and reacted with DHB 

Table 1. Experimental matrix of Doehlert design for optimizing the 
SPE method

Experiment pH
Flow rate / 
(mL min-1)

Buffer concentration / 
(mol L-1)

1 10 6.92 0.02

2 10 13.52 0.02

3 9 10.22 0.01

4 8 6.92 0.03

5 8 13.52 0.03

6 7 3.62 0.02

7 7 10.22 0.02

8 7 16.82 0.02

9 6 6.92 0.01

10 6 13.52 0.01

11 5 10.22 0.03

12 4 6.92 0.02

13 4 13.52 0.02
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(3.3 g in 250 mL of 10% m/v NaOH solution) at 0-3 oC 
for 24 h. The resulting brown-colored resin was filtered, 
washed with water and dried in air. The mass of the resin 
used to fill the column and the type and concentration of 
the eluent (1.0 mol L-1 HCl) was established in accordance 
with previous studies.

Mathematical modeling

Mathematical modeling was carried out using two 
modeling tools: least squares regression and artificial neural 
network. The surfaces were obtained by fitting polynomial 
functions to the absorbances obtained for each combination 
of levels regarding the variables set by a Doehlert design. 
The performances of two modeling methods were compared 
using the coefficient of determination (R2).

UV digestion of leachate

Leachate samples were digested with UV radiation.14 
A sample of 6.5 mL leachate was placed in a Petri dish 
in which another 0.5 mL of hydrogen peroxide (VETEC) 
plus another 3.0 mL of an ammoniacal buffer solution 
(pH 10) were added. The solutions were subjected to UV 
photodigestion for 40 minutes using a laboratory-made 
digester and were then transferred to 20 mL volumetric 
flasks. After that, the solutions were subjected to an 
ultrasonic bath for removal of residual bubbles. Finally, 
4 mL of the ammoniacal buffer solution (pH 10) were added 
to each sample and the liquid was diluted with deionized 
water up to 20 mL so as to perform the preconcentration 
procedure.

Acid digestion of leachate on a heating plate

The acid digestion was carried out with 5 mL of leachate. 
It was placed in a digestion tube and 2 mL of concentrated 
HNO3 (65%) were added. Next, the solutions were heated in 
the temperature range of 100-120 °C up to nearly dryness 
and complete digestion. The digested samples were cooled 
to room temperature. The sample solution was neutralized 
with 5% NaOH and 4 mL of ammoniacal buffer solution 
was added. The solutions were transferred to volumetric 
flasks and had their volumes completed with deionized 
water up to 20 mL before preconcentration. This process 
was carried out in duplicate for each sample.

Preconcentration system

Both digested samples (UV and acid procedures) were 
followed by solid phase extraction. Using a peristaltic 

pump, the samples were individually subjected to a 
minicolumn packed with an Amberlite XAD-4 polymer 
resin functionalized with 3,4-dihydroxybenzoic acid (DHB) 
at a flow rate of 10.92 mL min-1. In addition, 1.0 mL of 
1 mol L-1 HCl was used to elute the analyte of interest and 
the final solutions were stored in vials for analysis by FAAS.

Results and Discussion

Optimization of experimental conditions for solid phase 
extraction

Amongst the multivariate optimization procedures, 
response surface methodology (RSM) has been widely 
applied in analytical chemistry, since it allows the 
simultaneous optimization of variables in a very efficient 
manner. Among the experimental design used in RSM, the 
use of Doehlert matrix in the optimization of analytical 
methods has been increasing over the last years due to 
its efficiency and ease of application to a number of 
analytical systems.10 Accordingly, Doehlert was used 
in the multivariate optimization of the factors that most 
affect the solid phase extraction in order to simultaneously 
define the desired optimum values in this work: an 
efficient enrichment of the analyte during the sample 
preconcentration allowing instrumental analysis with better 
performance. The analytical signal of FAAS (absorbance) 
is the response of interest in this modeling and the results 
from Doehlert design application are shown in Table 2. 

Table 2. Responses (absorbance) from the application of Doehlert design 
in the preconcentration of Cd

Experiment 
Absorbance

Replication 1 Replication 2 Mean

1 0.100 0.105 0.103

2 0.080 0.093 0.087

3 0.102 0.116 0.109

4 0.096 0.096 0.096

5 0.086 0.086 0.086

6 0.024 0.024 0.024

7.1 0.012 0.014 0.013

7.2 0.014 0.015 0.015

7.3 0.015 0.013 0.014

8 0.011 0.014 0.013

9 0.024 0.025 0.025

10 0.012 0.013 0.013

11 0.002 0.000 0.001

12 0.002 0.002 0.002

13 0.000 0.000 0.000
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Modeling of response surfaces using least squares 
regression

Least squares regression is a multiple regression 
technique used to fit the mathematical models to a set of 
experimental data with the purpose of generating the least 
possible residue. The residue is the difference between the 
experimentally observed value and that calculated on the 
basis of the fitted mathematical function. Small residues 
denote a good predictive ability of the mathematical model. 
A quadratic function, using least squares regression, was 
fitted (equation 1) to depict the behavior of data from 
Table 2.

w = 0.23 – 0.035x + 0.0036x2 – 0.0018y + 0.0001y2 – 
15.4z + 328z2 – 0.0004xy + 0.33xz + 0.052yz (1)

where w is the response (absorbance), x denotes the pH 
of the preconcentrate solution, whilst y is the sample flow 
rate and z refers to the buffer concentration. The Pareto 
chart exhibited in Figure 1 reveals that, with regard to the 
quadratic equation, the quadratic term of flow rate (y2) and 
the interaction term between flow rate and buffer (yz) are 
not significant and can be removed without compromising 
the prediction. Therefore, pH is the most significant variable 
in the extraction process. Its positive value indicates that 
Cd extraction can be increased with pH elevation. 

 
The quality of the fitted model can be also evaluated by the 
graph of predicted values vs. the experimentally observed 
values (Figure 2) and by the coefficient of determination 
(R2). The R2 value observed for the linear model was 
0.7332, while that for the quadratic model was 0.9174. 
Despite the analysis of variance (ANOVA) indicating that 

(b)

there is lack of fit (p < 0.05 for a confidence level of 95%), 
the R2 from both the linear and the quadratic models reveals 
that the quadratic model is a better predictor. Residuals 
from the quadratic model do not follow random tendency, 
however it presents the lowest residuals than a linear model. 
Therefore, it was applied to obtain the optimum conditions 
to extract the analyte.

The critical point for the quadratic model is characterized 
as a minimum point. Given that the goal is to maximize the 
extraction of Cd in the solid phase, the coordinates of this 
point will not provide the desired optimum values. Hence, 
the surfaces generated from the quadratic model should be 
visually inspected in the search for values that generate the 
greatest possible response within the experimental field set 
out by the Doehlert matrix. The surfaces generated from 
equation 1 are exhibited in Figure 3.

Basic pH favors the extraction process. The influence 
of this factor on the SPE for the preconcentration of metals 
based upon complexation is remarkable given how the 
retention of metals depends upon active sites that arise 
from the deprotonation of functional groups. Therefore, in 
order to retain analytes of acidic character, the pH should 
be increased. It can be noted, then, that the variation in 
the pH range controls the formation of Cd-DHB complex. 
Although the effect is not as pronounced as in the case of 
variable pH, buffer concentration was the second most 
important factor in the studied preconcentration procedure. 
This can be justified in view of its role in maintaining 
the optimum pH when reconditioning the column after 
elution with HCl. The relatively low response variation 
for this variable probably has happened due to the short 
experimental field chosen in relation to the variation of 
buffer concentration.

Figure 1. Pareto chart relative to the terms of the quadratic function 
fitted to the data obtained from the application of Doehlert design in the 
optimization of solid phase extraction for Cd.

Figure 2. Graphical display of observed values vs. predicted values for 
the quadratic function on the absorbance data generated from the system 
of Cd preconcentration.
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The sampling flow rate in many SPE processes in 
minicolumn plays a major role in the retention of the 
analyte. A high sampling flow rate can reduce the time 
of contact of the analyte with the solid phase and thereby 
diminish its retention. Yet, as the flow rate observed in these 
experiments was seen to be less significant as compared to 
other variables, a higher flow rate was used so as to reduce 
the extraction time and enable faster analyses.

In analyzing surfaces, it was found that the largest 
extractions of the analyte occur at a basic pH level (10); 
sampling flow rate of 10.92 mL min-1 and higher buffer 
concentration values (0.03 mol L-1). These values were 
chosen as optimum in the implementation of the extraction 
process.

Modeling of response surfaces by artificial neural networks

Artificial neural networks (ANN) are computational 
operating systems inspired by the brain operations and 
consist of groups of highly interconnected processing 
elements known as neurons. ANN offer alternatives to the 
classical polynomial regression tools (such as least squares 
regression) in the mathematical modeling of response 
surfaces.15

The data obtained by the application of Doehlert 
design were modeled by neural networks for obtaining the 
response surfaces that better describe the behavior of data. 
The parameters adopted for the supervised learning of the 
tested networks are presented in Table 3. 

Backpropagation has been used as a learning mechanism 
for networks. So the outputs, which are predicted values, 
have been compared vs. the observed values (obtained 
experimentally) to produce the smallest possible errors. The 
following learning algorithms were tested under the same 
conditions for selecting the most appropriate algorithm to 
the available data: linear, radial basis function networks 

(RBF) and multilayer perceptrons (MLP). For the training 
phase were used all experimental points of Doehlert design.

The network algorithm No. 5 (Table 4) was the one that 
exhibited the lowest training error (0.0376) and, because 
of that, this algorithm was chosen for the construction of 
response surfaces relative to the optimization of Cd solid 
phase extraction. As illustrated in Figure 4, this architecture 
is a quite simple network with an efficient predictive ability. 
The error obtained in testing this network was also small 
(0.0596). Another parameter that proves the superiority of 
this algorithm is the value of R2. The graph of observed 
values vs. predicted values for the algorithm No. 5 is shown 
in Figure 5. Note that algorithm No. 5 has the highest 
R2 (0.9869). 

Algorithm No. 5 is a multilayer perceptron (MLP) 
whose neural network architecture is characterized by 
having three neurons in the input layer, a single middle 
layer with six neurons, and an output layer with one neuron. 

Figure 3. Two response surfaces generated by fitting the quadratic model to the data obtained from Cd absorbance.

Table 3. Parameters adopted in the supervised learning of neural networks

Parameter Value

Number of tested networks 10

Number of retained networks 5

Criterion for retention of algorithms Balance: errors vs. diversity

Time frame of learning 5 min

Learning rate 0.3%

Epoch 500000

Tested network algorithms:

Linear

GRNN

RBF

MLP

GRNN: general regression neural network; RBF: radial basis function 
network; MLP: multilayer perceptron.
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The network algorithm MLP 3:3-6-1:1 was adopted 
in the construction of response surfaces (Figure 6). The 
surface shapes are very similar to those obtained by least 
squares regression. Nevertheless, its fit to experimental 
data is higher. Therefore, in this work, the optimized values 
obtained by visual inspection are virtually identical to those 
obtained by least squares regression.

In general, ANN is able to better describe the 
experimental domain studied but in the case study discussed 
in this manuscript, the two modeling techniques showed 
the same efficiency of optimization.

Analytical characteristics of the optimized preconcentration 
method

Under the optimum extraction conditions, the 
analytical characteristics of the system were obtained 
for Cd preconcentration via solid phase extraction 
and determination by FAAS. The calibration curve 
obtained by the preconcentration of standard solutions was 

Table 4. Characteristics of neural networks retained in the training phase during the analysis of data from Doehlert design for optimizing Cd extraction

Algorithm Profile Training error
Network architecture

A B C D

1 RBF 2:2-4-1:1 9.8380 2 4 0 1

2 GRNN 3:3-16-2-1:1 5.3352 3 16 2 1

3 Linear 0.2008 2 0 0 1

4 MLP 3:3-9-1:1 0.0389 3 9 0 1

5 MLP 3:3-6-1:1 0.0376 3 6 0 1

A: number of neurons in the input layer; B: number of neurons in the first intermediate layer; C: number of neurons in the second middle layer; D: number 
of neurons in the output layer; GRNN: general regression neural network; RBF: radial basis function network; MLP: multilayer perceptron.

Figure 4. Architecture of the neural network algorithm No. 5 with three 
neurons in the input layer, six in the intermediate layer and one in the 
output layer.
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Figure 5. Graph of predicted values vs. observed values for therdata 
generated by the network algorithm No. 5 (MLP 3:3-6-1:1).

Figure 6. Two response surfaces modeled by the neural network algorithm MLP 3:3-6-1:1.
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A = 0.0024CCd + 0.0046 (R2 = 0.9961), where A refers to 
the absorbance and CCd stands for the concentration of Cd in 
the solution in µg L-1. It was found that the regression was 
highly significant (Freg = 1795 > Ftab = 1.06 × 10-9). In turn, the 
conventional analytical curve (without the preconcentration) 
resulted in the following equation A = 0.00027CCd + 0.0091 
(R2 = 0.9975). Once again the regression was highly 
significant (Freg = 2.026 > Ftab = 1.02 × 10-7).

The enrichment factor of Cd was calculated as the ratio 
of slopes (m) provided by the calibration curves with and 
without the preconcentration step. A preconcentration factor 
of 9 times was found for this system. The XAD-4/DHB  
column can be used for more than 450 cycles of 
preconcentration without losing its efficiency.

The limit of detection (LOD) can be defined as the 
minimum amount of an analyte that can be detected by a 
technique, i.e., it is the estimate that the detection of the 
analyte can be distinguished from a background noise. 
On the other hand, the limit of quantification (LOQ) 
is the smallest amount to safely use a technique with a 
quantitative error below 5%.16 The limits were determined 
using 10 consecutive blank measurements of the aqueous 
solutions. LOD and LOQ were calculated based on the 
calibration curve values. Hence, LOD = 3 sb / m and 
LOQ = 10 sb / m, where sb denotes the standard deviation 
of measurements from the blank solution, and m refers to 
the slope of analyical curve. The limits of detection and 
quantification obtained using this procedure were 0.72 and 
2.4 µg L-1, respectively. 

The precision of the procedure was assessed by 
repeatability and reproducibility (accessed by interdays 
determinations within the same laboratory), using 
the relative standard deviation percentage (%RSD) 
of ten consecutive measurements obtained after the 
preconcentration of standard solutions. The obtained 
%RSD had values of 3.8 and 5.2% for repeatability and 4.2 
and 5.4 for reproducibility, respectively, for concentrations 
of 5 and 20 µg L-1.

Since certified leachate samples were not available, the 
accuracy of Cd determinations was evaluated by the test of 
metal addition/recovery using the UV digestion procedure. 
This measure reflects the amount of analyte recovered in 
the process in respect of the actual quantity present in the 
sample.17,18 The results of the recovery test of Cd in leachate 
samples at a final concentration of 15 µg L-1 were between 
97 to 112%. Three samples were also analyzed by graphite 
furnace atomic absorption spectrometry (GFAAS) (Table 6) 
and Cd concentrations were close to those found by the 
preconcentration method.

Robustness studies were carried out for the three 
optimized variables using two-level factorial design. 

Sampling flow rate was shown to be robust when varying 
levels below 10% from its optimum value while buffer 
concentration presents levels of 8% and pH, the less robust 
variable, presents levels smaller than 2%. Likewise, two 
procedures for the digestion of leachate samples were 
assessed: acid digestion and digestion assisted by UV 
radiation; comparison of these two methods was done via 
paired t-test. It was found that there is a significant difference 
between the means of results generated at a confidence level 
of 95% (p value = 0.012 < 0.05). The concentrations found 
by UV method were greater than that from acid digestion. 
This can be explained by the fact that Cd is a very volatile 
element that can be easily lost when the sample digestion is 
accomplished by heating in open systems.19 To evaluate this 
hypothesis, addition/recovery tests for Cd were performed 
using the digestion of the slurry sample by heating. Losses 
between 76 and 91% were observed.

Results show that UV digestion has greater advantages 
over acid digestion in total Cd determination. This fact 
represents a benefit, since digestion by heating in an open 
vial increases the risks of sample contamination, which is 
extremely harmful in trace analysis.12 Furthermore, UV 
digestion acts as a facilitator to preconcentration, since it 
does not require neutralization of the excess acid that is not 
consumed in the digestion and thereby adjust the pH before 
the preconcentration, becomes an easier task. 

The analytical characteristics of the developed method 
were compared with the characteristics from other methods 
(Table 5), which also carried out offline Cd solid phase 
extraction. It was noted that, taking into account the small 
sample volume used, the method presents compatible 
characteristics with those already published.

Leachate sample analyses

The system of optimized preconcentration was employed 
to determine Cd concentrations in leachate samples 
(Table 6). The results are compared to the maximum value 
allowed by the Brazilian National Environment Council 
(CONAMA) resolution No. 430/2011, which regulates the 
effluent discharge standards.27

The Cd content of leachate samples collected between 
November 2011 and May 2012 in the stabilization pond is 
below the limits established by the CONAMA resolution 
No. 430/2011, i.e., in accordance with the law. The low 
Cd concentrations can be explained by the low solubility 
under the prevalent conditions: alkaline pH, high organic 
matter content, formation of chelates and sedimentation 
in the pond. 

As regards the decreased levels of dissolved metals in 
the leachate, it is known that the organic matter in the soil 
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is capable of attenuating the migration of various metals 
into the leachate.28 Christensen et al.29 argue that the main 
processes of Cd attenuation in leachate are: dilution, 
complexation, sorption and precipitation. Furthermore, Cd 
sources such as rechargeable batteries and ferrous alloys 
are withdrawn by collectors, who have a shed on site. This 
contributes to a considerable reduction of the element in 
the landfill cells.

The pH from the acidic or basic medium is crucial 
in defining the age of the leachate and consequently the 
age of the landfill. The phases wherein leachate can be 
classified according to pH variation are methanogenic 
and acid.30 A leachate sample collected in the acid phase 
in a landfill in operation for a few years and subjected 
to unstable anaerobic fermentation shows high acidic 
pH, chemical oxygen demands (COD) and total organic 
carbon (TOC) levels. In the methanogenic phase, chemical 

oxygen demands and total organic carbons decrease as pH 
increases.31

As illustrated in Table 6, the pH determined in the 
leachate samples from the sanitary landfill of Jaguaquara 
is alkaline. Alkaline pH favors the precipitation and 
removal of Cd from the leachate, making it stationary on 
the soil. One can therefore assert that the analyzed leachate 
derives from the waste mass that is under methanogenic 
decomposition. When considering that the landfill has 
been operating for more than 10 years, the pH values 
corroborate the findings of previous works and indicate 
low concentrations of potentially toxic metals.32

In a study conducted at the municipal landfill of 
Ribeirão Preto city, São Paulo State (Brazil), the Cd 
contents of leachate samples collected in 2000 and 
2004 have been dosed, respectively, at concentrations 
of 10 and 12 µg L-1.19 In the quantification of levels of 

Table 5. Comparisons of the analytical performance of the present off line system with those reported in the literature with FAAS detection techniques

Sample
LOD / 
(µg L-1)

LOQ / 
(µg L-1)

EF %RSD Solid phase
Sampling 

volume / mL
Ref.

Sanitary landfill leachate 0.72 2,4 9 4.0-6.4 XAD 4 modified with DHB 20 This work

Mineral waters 0.05 0,17 30 2.9-3.4 Sisal fiber loaded with TAR 50 20

Water and sediment 0.093 0.21 20 3.7 Poly-Cd(II)-DAAB-VP ion imprinting resin 100 21

Water and cereal 0.13 0.43 28 – XAD-4 functionalized with 
2,6-pyridinedicarboxaldehyde

10 22

Water samples and food 
products

0.05 0.17 360 2.4 Multiwall carbon nanotubes with 
diphenylcarbazide

1800 23

Environmental samples 0.43 1.43 50 5 Dowex optipore V-493 250 24

Water samples 0.65 2.2 100 0.92 Gallic acid-silica gel 1000 25

River and tap waters 0. 6 2.0 40 1.5-3.9 Naphthalene-methyltrioctylammonium 
chloride adsorbent

100 26

EF: enrichment factor; DHB: 3.4-dihydroxybenzoic acid; TAR: thiazolylazo-resorcinol; DAAB-VP: diazoaminobenzene-vinylpyridine.

Table 6. Amount of Cd and pH in the leachate samples collected from the Jaguaquara Sanitary Landfill-BA

Sample (month/year) pH
Cd concentration / (µg L-1)

Recovery / % GFAAS / (µg L-1)
Added Found

1 (Nov/2011) 9.62 – 6.64 ± 1.0 – 6.71 ± 0.7

15.0 21.2 ± 0.8 97.0 –

2 (Dec/2011) 8.10 – 7.99 ± 4.8 – 8.25 ± 0.9

3 (Jan/2012) 9.88 – 2.57 ± 2.9 – –

15.0 19.4 ± 1.1 112 –

4 (Feb/2012) 9.47 – 2.57 ± 1.0 – –

5 (Mar/2012) 9.70 – 3.25 ± 1.9 – –

6 (Apr/2012) 9.86 – 2.57 ± 1.0 – –

7 (May/2012) 10.19 – 3.25 ± 0.0 – 2.75 ± 1.0

Maximum allowed valuea 200

aCONAMA resolution 430/2011. 
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various metals in leachate samples from the sanitary 
landfill located at the north area of Porto Alegre city in 
Rio Grande do Sul State (Brazil), researchers have dosed 
the minimum and maximum levels of Cd from 0.003 
to 2.0 mg L-1.33 In another work, Cd determinations of 
leachate samples from a Polish landfill have dosed the 
quantity at 9.0 mg L-1.22 Hence, when comparing the Cd 
concentrations from the municipal sanitary landfill of 
Jaguaquara, Bahia, Brazil to the above-mentioned studies, 
it appears that the dosage levels were similar to or below 
those found by these researchers.

Conclusions

The results obtained from the determination of Cd on 
leachate samples have revealed that the optimized analytical 
methodology is feasible in the preconcentration of the metal 
of interest. The procedure has a good analytical performance, 
speed, simplicity, efficiency and it is inexpensive.

The response surface methodology associated with 
Doehlert design matrix has enabled a rapid and efficient 
optimization of the variables affecting the performance 
of the preconcentration system. The fit of polynomial 
functions by modeling tools, such as least squares 
regression and neural networks has allowed the description 
of data behavior in the studied experimental region as well 
as the determination of optimum values for the efficient 
execution of preconcentration. The fit carried out by the 
neural network had a better predictive ability, but the results 
relative to the optimum values found in both processes were 
similar. The procedure has exhibited excellent limits of 
detection and quantification; in other words, it has displayed 
the adequate sensitivity to determine such metal taking into 
account the complex matrix and concentrations at trace 
levels (µg L-1). The use of UV radiation in the process of 
sample digestion was seen to be the best suited and more 
reliable than digestion by heating in an open system. The 
sample concentrations digested with UV exhibited higher 
values in the analyte concentration. Such a technique is 
characterized by low cost, high efficiency and minimum 
risks of losses and contamination.

This study has also revealed that the Cd concentrations 
in the sanitary landfill of Jaguaquara-BA are below 
the limit established by the CONAMA resolution No. 
430/2011. Finally, the environmental analysis is part 
of the initial record of Cd concentrations in effluents 
(leachate) originating from the landfill located at the 
southwest region of Bahia state, northeastern Brazil, and 
integrates the scientific base of information to support 
the design, management and monitoring of leachate 
treatment systems. 
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