

Catalytic Activity of a Titanium(IV)/Iron(II) Heterometallic Alkoxide in the Ring-Opening Polymerization of ε-Caprolactone and *rac*-Lactide

Siddhartha O. K. Giese, Cristiano Egevardt, André Luis Rüdiger, Eduardo L. Sá, Thiago Alessandre Silva, Sônia F. Zawadzki, Jaísa F. Soares and Giovana G. Nunes*

> Departamento de Química, Universidade Federal do Paraná (UFPR), 81530-900 Curitiba-PR, Brazil

Table S1. Solution polymerization of ϵ -caprolactone at 90 °C with [FeCl $\{Ti_2(OPr^i)_9\}$] (1) as initiator, with an initial monomer/initiator (ϵ -CL/1) ratio of 500 and successive additions of monomer to the reaction mixture

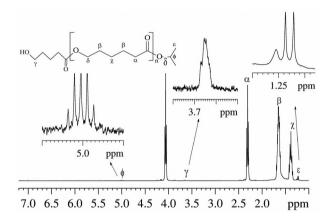
	ε-CL / mL	time / h	$lpha_{ m c}$ / %	Yield ^a / %	$M_{\scriptscriptstyle n}(GPC)^{\scriptscriptstyle b}/(g\;mol^{\scriptscriptstyle -1})$	PDIc
Reaction mixture	0.5	8	99	99	9100	1.60
1st addition	+0.5	8	99	99	15400	1.60
2 nd addition	+0.5	8	90	75	14000	1.51
3 rd addition	+0.5	8	40	50	13000	1.52

 $^{^{}a}$ Yield based on the isolated amount of solid; b average molecular weights (M_{n}) determined by GPC in the and multiplied by the correction value of 0.56; 27 c polydispersity index, also calculated from GPC data.

Table S2. In bulk polymerization of ε-caprolactone (ε-CL) with [Ti(OPrⁱ)_i] as initiator. The εCL/2 ratio was fixed at 250

entry	Temperature / °C	time / min	$\alpha_{\rm C}$ / %	Yield ^a / %	M_n (theoretical) ^b / (g mol ⁻¹)	$M_n(^1H RMN)^c/$ $(g mol^{-1})$	$M_n(GPC)^d$ / $(g mol^{-1})$	PDIe	$N_n^{\ \mathrm{f}}$
1	30	1440	100	93	33385	7990	7400	1.49	4.50
2	60	60	99	94	35098	6848	7750	1.66	4.53
3	90	30	96	80	34242	7876	7490	1.67	4.57
4	90	60	99	93	35098	7762	7410	1.66	4.73
5	120	30	100	99	35098	8104	7850	1.68	4.47
6	120	60	100	95	33956	9702	7680	1.67	4.42

^aYield based on the amount of isolated solid; ^btheoretical molecular weight calculated from the formula: $[M_{w(CL)} \times (CL/1) \times \alpha_c] + 60$ (for the terminal groups); ^caverage molecular weights determined by ¹H NMR; ^daverage molecular weights (M_n) determined by GPC in the using the correction value 0.56;²⁷ ^epolydispersity index, also calculated by GPC; ^fcalculated from M_n(theoretical)/M_n(GPC). It refers to the number of growing chains *per* molecule of the initiator.


Table S3. Polymerization of ϵ -caprolactone (ϵ -CL) in toluene solution (entries 1 and 2) and toluene/isopropanol 10:1 (entries 3 to 6) with $[FeCl_2(Pr^iOH)_4]$ (4) as initiator

entry	ε-CL/Initiator ^a	Temperature / °C	time / min	Yield ^b / %	M _n (GPC) ^c / (g mol ⁻¹)	PDI ^d
1	500	90	8	-	-	_
2	500	90	20	20	1690	1.10
3	250	85	20	73	980	2.04
4	500	85	20	100	1060	1.09
5	1000	85	20	100	1200	1.05
6	2000	85	20	100	1230	1.24

^aYield based on the amount of isolated solid; ^btheoretical molecular weight, calculated for quantitative conversions from the formula: $M_{CL} \times ([CL] / [1]) \times ([CL]$

Figure S1. Structural representation of the complexes [FeCl $\{Ti_2(OPr^i)_9\}$] (1), [Fe $_4Cl_8(thf)_6$] (3) and [FeCl $_2(Pr^iOH)_4$] (4), employed in this work as initiators for ϵ -caprolactone and rac-lactide polymerization.

Figure S2. ¹H NMR spectrum (400.13 MHz, CDCl₃) recorded for poly(ε-caprolactone).

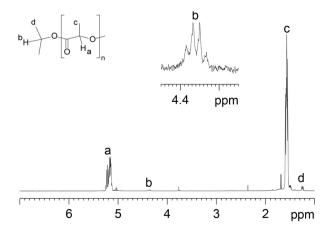
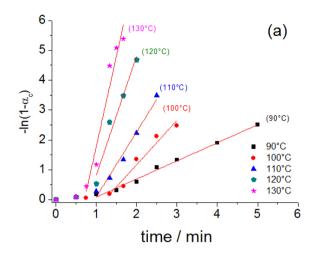
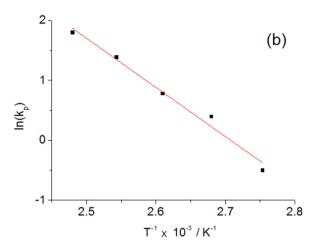




Figure S3. ¹H NMR spectrum (400 MHz, CDCl₃) for poly(*rac*-lactide).

Figure S4. Kinetic plots for consumption of ε-caprolactone *versus* time at 90, 100, 110 and 120 and 130 °C for an ε-CL/[Ti(OPr i)₄] ratio of 250 in (a) and plot of ln k_p *versus* 1/T for ε-caprolactone polymerization in an ε-CL/[Ti(OPr i)₄] molar ratio of 250 in (b).

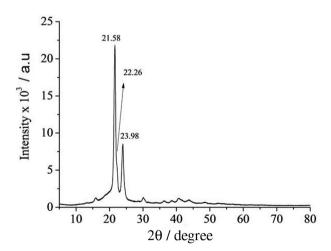
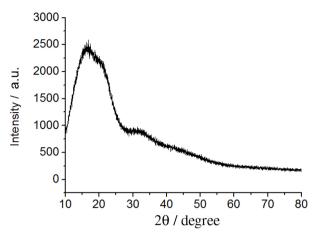
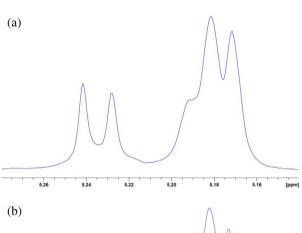
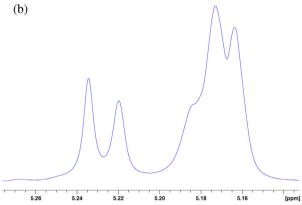
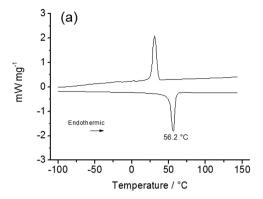
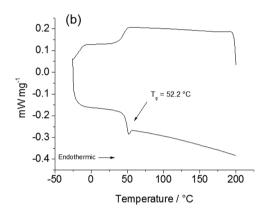





Figure S5. Powder X-ray diffraction pattern registered for a typical poly(ϵ -caprolactone) sample produced in this work.




Figure S6. Powder X-ray diffraction pattern recorded for a representative poly(*rac*-lactide) sample produced in this work.

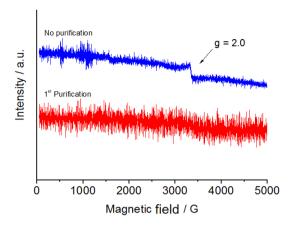


Figure S7. Homodecoupled ¹H NMR spectrum (400 MHz, CDCl₃) registered for the methyne region of poly(*rac*-lactide) using **1** as initiator in (a) or **2** as initiator in (b).

Figure S8. Typical DSC curve for poly(ε-caprolactone) analyzed from ambient temperature to 150 °C, then left for 5 min in isotherm, cooled to -120 °C, 5 min in isotherm and heated up again to 150 °C at a scan rate of 10 °C min⁻¹ in (a); and poly(*rac*-lactide) analyzed from -20 to 200 °C, left for 5 min in isotherm, cooled to -20 °C, 5 min in isotherm and heated up again to 200 °C at a scan rate of 10 °C min⁻¹ in inert atmosphere in (b).

Figure S9. X-Band EPR spectra of ε-PCL prepared with **1** as initiator, registered at 77K for the original sample and for the solid obtained after reprecipitation.