

Monitoring of Diclofenac with Biomimetic Sensor in Batch and FIA Systems

Ademar Wong, * Luiz D. Marestoni and Maria D. P. T. Sotomayor

Departamento de Química Analítica, Instituto de Química, Universidade Estadual Paulista (UNESP), 14801-970 Araraquara-SP, Brazil

Figure S1. Schematic diagram of the flow injection system for amperometric determination of diclofenac. WE: working electrode (biomimetic sensor); AE: auxiliary electrode (platinum); RE: homemade reference electrode (Ag|AgCl|KCl_{sat}).

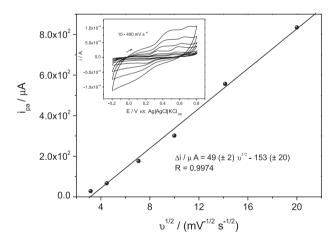
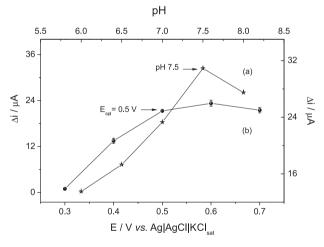



Figure S2. Linear dependence of the anodic peak current (Δi) vs. square root of the scan rate ($v^{1/2}$). Inset: study of scan rate with the proposed sensor from cyclic voltammetry in 0.1 mol L^{-1} phosphate buffer (pH 7.5) containing 1.0×10^{-4} mol L^{-1} of diclofenac.

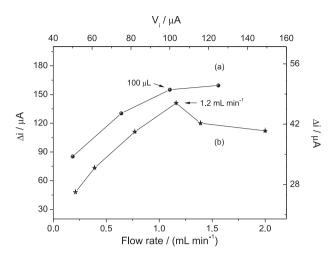


Figure S3. EDX spectrum of the copper complex and MWCNT-COOH.

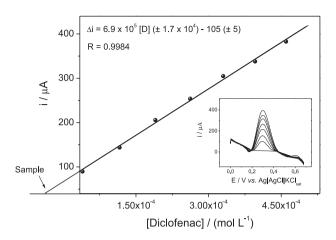


Figure S4. Influence of the parameters in the proposed FIA system: (a) effect of pH on the response to diclofenac using a flow rate of 1.2 mL min⁻¹; (b) effect of potential on the response to diclofenac, using a sample volume (V_i) of 100 μ L. The experiments were carried out using a carrier of 0.1 mol L⁻¹ PBS buffer at pH 7.5, and applying a potential of 500 mV vs. Ag|AgCl|KCl_{sut}.

^{*}e-mail: unesp@hotmail.com

Figure S5. Influence of the parameters in the proposed FIA system: (a) effect of injected sample volume (V_i) on the response to diclofenac using a flow rate of 1.2 mL min⁻¹; (b) effect of flow rate on the response to diclofenac, using a V_i of 100 μ L. The experiments were carried out using a carrier of 0.1 mol L⁻¹ PBS buffer at pH 7.5, and applying a potential of 500 mV vs. Ag|AgCl|KCl_{sat}.

Figure S6. Result obtained in recovery experiments carried out for human serum samples using the standard addition method for samples No. 1.