

An Efficient Synthesis of Novel Bis-Chalcones and Bis-Pyrazolines in the Presence of Cellulose Sulfuric Acid as Biodegradable Catalyst under Solvent-Free Conditions

Zeba N. Siddiqui* and Tabassum Khan

Department of Chemistry, Aligarh Muslim University, 202002 Aligarh, India

Figure S1. ¹H NMR (DMSO- d_6 , 400 MHz) spectrum of compound 3a.

Figure S2. ¹³C NMR (DMSO- d_{c_2} 100 MHz) spectrum of compound 3a.

Figure S3. FT-IR (KBr) spectrum of compound 3a.

Figure S4. MS spectrum of compound 3a.

Figure S5. ¹H NMR (DMSO-*d*₆, 400 MHz) spectrum of compound 3b.

Figure S6. ¹³C NMR (DMSO-*d*₆, 100 MHz) spectrum of compound 3b.

Figure S7. FT-IR spectrum of compound 3b.

Figure S8. MS spectrum of compound 3b.

H1 NMR of 3c

Figure S9. ¹H NMR (DMSO-*d*₆, 400 MHz) spectrum of compound 3c.

Figure S10. ¹³C NMR (DMSO- d_6 , 100 MHz) spectrum of compound 3c.

Figure S11. FT-IR (KBr) spectrum of compound 3c.

Figure S12. MS spectrum of compound 3c.

H1 NMR of 3d

Figure S13. ¹H NMR (DMSO-*d*₆, 400 MHz) spectrum of compound 3d.

Figure S14. ¹³C NMR (DMSO-*d*₆, 100 MHz) spectrum of compound 3d.

Figure S15. FT-IR (KBr) spectrum of compound 3d.

Figure S16. MS spectrum of compound 3d.

H1NMR of 3e

Figure S17. ¹H NMR (DMSO- d_6 , 400 MHz) spectrum of compound 3e.

Figure S18. ¹³C NMR (DMSO- d_6 , 100 MHz) spectrum of compound 3e.

Figure S19. FT-IR (KBr) spectrum of compound 3e.

Figure S20. MS spectrum of compound 3e.

Figure S21. ¹H NMR (DMSO-*d*₆, 400 MHz) spectrum of compound 5a.

Figure S22. ¹³C NMR (DMSO- d_6 , 100 MHz) spectrum of compound 5a.

Figure S23. FT-IR (KBr) spectrum of compound 5a.

Siddiqui and Khan

Figure S24. MS spectrum of compound 5a.

Figure S25. ¹H NMR (DMSO- d_6 , 400 MHz) spectrum of compound 5b.

Figure S26. ¹³C NMR (DMSO- d_6 , 100 MHz) spectrum of compound 5b.

Figure S27. FT-IR (KBr) spectrum of compound 5b.

Figure S28. MS spectrum of compound 5b.

Figure S29. ¹H NMR (DMSO- d_6 , 400 MHz) spectrum of compound 5c.

Figure S30. ¹³C NMR (DMSO- d_6 , 100 MHz) spectrum of compound 5c.

Figure S31. FT-IR (KBr) spectrum of compound 5c.

Figure S32. MS spectrum of compound 5c.

Figure S33. ¹H NMR (DMSO- d_6 , 400 MHz) spectrum of compound 5d.

Figure S34. ¹³C NMR (DMSO- d_6 , 100 MHz) spectrum of compound 5d.

Figure S35. FT-IR (KBr) spectrum of compound 5d.

Figure S36. MS spectrum of compound 5d.

H1NMR of 5e

Figure S37. ¹H NMR (DMSO- d_6 , 400 MHz) spectrum of compound 5e.

Figure S38. ¹³C NMR (DMSO- d_6 , 100 MHz) spectrum of compound 5e.

C13NMR of 5e

Figure S39. FT-IR (KBr) spectrum of compound 5e.

Figure S40. MS spectrum of compound 5e.

H1NMr of 5f

Figure S41. ¹H NMR (DMSO-*d*₆, 400 MHz) spectrum of compound 5f.

Figure S42. ¹³C NMR (DMSO- d_6 , 100 MHz) spectrum of compound 5f.

Figure S43. FT-IR (KBr) spectrum of compound 5f.

Figure S44. MS spectrum of compound 5f.

Figure S45. ¹H NMR (DMSO- d_6 , 400 MHz) spectrum of compound 5g.

Figure S46. ¹³C NMR (DMSO-*d*₆, 100 MHz) spectrum of compound 5g.

Figure S47. FT-IR (KBr) spectrum of compound 5g.

Figure S48. MS spectrum of compound 5g.

Figure S49. ¹H NMR (DMSO- d_6 , 400 MHz) spectrum of compound 5h.

Figure S50. ¹³C NMR (DMSO- d_6 , 100 MHz) spectrum of compound 5h.

Figure S51. FT-IR (KBr) spectrum of compound 5h.

Figure S52. MS spectrum of compound 5h.

Figure S53. ¹H NMR (DMSO- d_6 , 400 MHz) spectrum of compound 5i.

Figure S54. ¹³C NMR (DMSO-*d*₆, 100 MHz) spectrum of compound 5i.

Figure S55. FT-IR (KBr) spectrum of compound 5i.

Figure S56. MS spectrum of compound 5i.

Figure S57. ¹H NMR (DMSO-*d*₆, 400 MHz) spectrum of compound 5j.

Figure S58. ¹³C NMR (DMSO-*d*₆, 100 MHz) spectrum of compound 5j.

Figure S59. FT-IR (KBr) spectrum of compound 5j.

Figure S60. MS spectrum of compound 5j.