Conformational Analysis of 2,2'-arylmethylene bis(3-hydroxy-5,5-dimethyl-2cyclohexene-1-one) by NMR and Molecular Modeling

Marcelle de S. Ferreira and José D. Figueroa-Villar*

Medicinal Chemistry Group, Department of Chemistry, Military Institute of Engineering, Praça General Tiburcio 80, 22290-270 Rio de Janeiro-RJ, Brazil

FigureS1. IR (KBr) of compound 3a.

Figure S2. ¹H RMN spectrum (CDCl₃, 600 MHz) of compound 3a.

Figure S3. ¹³C RMN spectrum (CDCl₃, 150 MHz) of compound 3a.

Figure S4. HSQC spectrum (CDCl₃, 600 MHz) of compound 3a.

Figure S5. IR (KBr) of compound 3b.

Figure S6. ¹H RMN spectrum (CDCl₃, 600 MHz) of compound 3b.

Figure S7. ¹³C RMN spectrum (CDCl₃, 150 MHz) of compound 3b.

Figure S8. IR (KBr) of compound 3c.

Figure S9. ¹H RMN spectrum (CDCl₃, 600 MHz) of compound 3c.

Figure S10. ¹³C RMN spectrum (CDCl₃, 150 MHz) of compound 3c.

Figure S11. IR (KBr) of compound 3d.

Figure S12. ¹H RMN spectrum (CDCl₃, 600 MHz) of compound 3d.

Figure S13. ¹³C RMN spectrum (CDCl₃, 150 MHz) of compound 3d.

Figure S14. IR (KBr) of compound 3e.

Figure S15. ¹H RMN spectrum (CDCl₃, 600 MHz) of compound 3e at 20 °C.

Figure S16. ¹H RMN spectrum (CDCl₃, 600 MHz) of compound 3e at 50 °C.

Figure S17. ¹³C RMN spectrum (CDCl₃, 150 MHz) of compound 3e at 20 °C.

Figure S19. IR (KBr) of compound 3f.

Figure S20. ¹H RMN spectrum (CDCl₃, 600 MHz) of compound 3f.

Figure S21. ¹³C RMN spectrum (CDCl₃, 150 MHz) of compound 3f.

Figure S22. IR (KBr) of compound 3g.

Figure S23. ¹H RMN spectrum (CDCl₃, 600 MHz) of compound 3g at 20 °C.

Figure S24. ¹H RMN spectrum (CDCl₃, 600 MHz) of compound 3g at 50 °C.

Figure S25. ${}^{13}C$ RMN spectrum (CDCl₃, 150 MHz) of compound 3g at 20 °C.

Figure S26. ¹³C RMN spectrum (CDCl₃, 150 MHz) of compound 3g at 50 °C.

Figure S27. NOESY-2D spectrum (CDCl₃, 600 MHz) of compound **3b** showing the dipolar coupling interaction of the two intramolecular hydrogen bond signals (11.93 and 11.58 ppm) with H7 (5.48 ppm).

Figure S28. Graphic of correlation between the atomic charge (NBO) of C1 (**3a-e**) with the σ_p Hammett values of the R groups.

Figure S29. Graphic of correlation between the atomic charge (NBO) of C9 (**3a-e**) with the σ_n Hammett values of the R groups.

Figure S30. Graphic of correlation between the atomic charge (NBO) of C2 (**3a-e**) with the σ_n Hammett values of the R groups.

Figure S31. Graphic of correlation between the atomic charge (NBO) of C8 (**3a-e**) with the σ_n Hammett values of the R groups.

Figure S32. Graphic of correlation between the atomic charge (NBO) of C3 (**3a-e**) with the σ_n Hammett values of the R groups.

Figure S33. Graphic of correlation between the atomic charge (NBO) of C13 (**3a-e**) with the σ_p Hammett values of the R groups.

Figure S34. Graphic of correlation between the atomic charge (NBO) of C13 (3a-e) with the chemical shift $\delta_{C1/C9}$.

Figure S35. Graphic of correlation between the atomic charge (NBO) of C9 (**3a-e**) with the chemical shift $\delta_{C1/C9}$.

Figure S36. Graphic of correlation between the atomic charge (NBO) of C2 (3a-e) with the chemical shift δ_{C2} .

Figure S37. Graphic of correlation between the atomic charge (NBO) of C8 (3a-e) with the chemical shift δ_{C8} .

Figure S38. Graphic of correlation between the atomic charge (NBO) of C3 (**3a-e**) with the chemical shift $\delta_{C31/C13}$.

Figure S39. Graphic of correlation between the atomic charge (NBO) of C13 (3a-e) with the chemical shift δ_{C3C13} .

н	δ _H	Int.	Mult.	J / Hz	COSY	NOESY
ОН	11.95	s	1H	_	_	5.48
ОН	11.57*	bs	0.3H	_	-	_
H15/H-19	6.95	d	2H	8.4	6.97	6.67, 5.48, 1.24, 1.10
H16/H-18	6.67	d	2H	8.4	6.95	2.91
H7	5.48	S	1H	-	-	11.94, 6.95
R group	2.91	s	6H	-	-	6.67
H4a/H12a	2.45	d	2H	17.4	2.32	1.24, 1.10
H6a/H10a	2.40	d	2H	13.8	2.38	1.24, 1.10
H6b/H10b	2.38	d	2H	13.8	2.40	1.24, 1.10
H4b/H12b	2.32	d	2H	17.4	2.45	1.24, 1.10
H21/H23	1.24	s	6H	-	-	6.95, 2.45, 2.40, 2.38, 2.32
H20/H22	1.10	s	6H	_	-	6.95, 2.45, 2.40, 2.38, 2.32

Table S1. ¹H NMR assignment (CDCl₃, 600 MHz) of compound 3a

Table S2. ¹³C NMR assignment (CDCl₃, 150 MHz) of compound 3a

c	δ_{c}	АРТ	HSQC	HMBC
C1/C9	190.41	С	_	2.45, 2.38
C3/C13	189.46	С	-	5.48, 2.40, 2.32
C17	148.95	С	-	6.95 , 5.48, 2.91
C15/C19	127.68	СН	6.95	6.95, 5.48
C14	125.79	С	-	6.67, 5.48
C2/C8	116.15	С	_	5.48
C-16/C18	112.88	СН	6.67	6.67 . 5.48, 2.91
C6/C10	47.29	CH ₂	2.40, 2.32	11.95, 2.45
C4/C12	46.66	CH_2	2.45, 2.38	2.40, 1.24 , 1.10
R group	40.91	CH ₃	2.91	_
C7	32.04	СН	5.48	6.95
C5/C11	31.57	С	_	2.45, 2.40. 2.38, 2.32, 1.24, 1.10
C20/C22	29.91	CH ₃	1.24	2.40, 2.38, 2.32, 1.24
C21/C23	27.54	CH ₃	1.10	2.45, 2.40, 2.39, 2.32, 1.10

Table S3.¹H NMR assignment (CDCl₃, 600 MHz) of compound 3b

Н	δ _H	Int.	Mult	J / Hz	COSY	NOESY
ОН	11.93	1H	S	_	_	7.01, 5.48 e 2.46
ОН	11.58	0.6H	bs	-	-	7.01, 5.48 e 2.46
H15/H-19	7.01	2H	d	8.4	6.82	11.93, 6.82, 5.48, 2.40, 1.23 e 1.11
H16/H-18	6.82	2H	d	8.4	7.01	7.01, 3.78
H7	5.48	1 H	S	-	-	11.93, 11.58, 7.01, 2.38, 1.23 e 1.11
R group	3.78	3H	S	-	-	6.82, 2.41
H4a/H12a	2.46	2H	d	18.0	2.32	7.01, 1.23 , 1.11
H6a/H10a	2.40	2H	d	16.2	2.38	7.01, 5.48, 3.78, 1.23 , 1.11
H6b/H10b	2.38	2H	d	16.2	2.40	7.01, 1.23 , 1.11
H4b/H12b	2.32	2H	d	18.0	2.46	7.01, 1.23 , 1.11
H21/H-23	1.23	6H	S	-	-	7.01, 2.41 , 1.11
H20/H-22	1.11	6H	S	-	-	7.01, 2.41 , 1.23

C	δ_{c}	APT	HSQC	НМВС
C1/C9	190.61	С	_	5.48 , 2.46, 2.38
C3/C13	189.56	С	-	11.93, 5.48 , 2.40, 2.32
C17	157.79	С	-	7.01 , 6.82
C14	130.02	С	_	6.82, 5.48
C15/C19	127.99	СН	7.01	7.01, 5.48
C2/C8	116.00	С	_	11.93, 5.48
C16/C-18	113.85	СН	6.82	6.82, 5.48
R group	54.41	CH ₃	3.78	_
C6/C10	47.27	CH_2	2.40, 2.38	11.93 , 2.46
C4/C12	46.69	CH_2	2.46, 2.32	2.40, 2.32, 1.23 , 1.11
C7	32.23	СН	5.48	7.01
C5/C11	31.59	С	-	2.46, 2.40, 2.38, 2.32, 1.23 , 1,11
C20/C22	29.88	CH ₃	1.11	2.32, 1.23
C21/C23	27.57	CH ₃	1.23	2.46, 2.40, 2.38, 2.32, 1.11

Table S4. ¹³C NMR assignment (CDCl₃, 150 MHz) of compound 3b

Table S5. ¹H NMR assignment (CDCl₃, 600 MHz) of compound 3c

Н	δ _H	Int.	m	J / Hz	COSY	NOESY
ОН	11.91	1H	s	_	_	5.55
ОН	11.57	0.3H	bs	_	-	5.55
H16/H-18	7.28	2H	t	7.8	7.18, 7.11	7.18, 7.11
H17	7.18	1H	t	7.2	7.28	7.28
H15/H-19	7.11	2H	d	8.4	7.28	7.28, 5.55, 1.25
H7	5.55	1H	s	-	-	11.91, 11.57, 7.11
H4a/H12a	2.49	2H	d	18.0	2.34	2.34, 2.402.38, 1.25, 1.11
H6a/H10a	2.40	2H	d	15.6	2.38	2.49, 2.38, 1.25, 1.11
H6b/H10b	2.38	2H	d	15.6	2.40	2.49, 2.34, 1.25, 1.11
H4b/H12b	2.34	2H	d	18.0	2.49	2.49, 2.38, 1.25, 1.11
H21/H23	1.25	6H	s	_	-	7.11, 2.49, 2.34, 2.28, 1.11
H20/H22	1.11	6H	s	-	-	2.49, 2.40, 2.34, 2.28, 1.25

Table S6. ¹³C NMR assignment (CDCl₃, 150 MHz) of compound 3c

С	δ _c	АРТ	HMBC	НМВС
C1/C9	190.67	С	_	5.55 , 2.49, 2.38
C3/C13	189.60	С	_	11.91, 5.55 , 2.40, 2.34
C14	138.28	С	_	7.28, 5.55
C16 /C18	128.42	СН	7.28	7.28 , 5.55
C15 /C19	126.99	СН	7.11	7.28, 7.18, 7.11, 5.55
C17	126.05	СН	7.18	7.11
C2/C8	115.81	С	_	5.55
C6/C10	47.28	CH_2	2.40, 2.38	11.91, 2.49, 1.25 , 1.11
C4/C12	46.67	CH_2	2.49, 2.34	2.40, 1.25 , 1.11
C7	32.96	СН	5.55	7.11
C5/C11	31.63	С	_	2.49, 2.38, 2.34, 1.25, 1.11
C20/C22	29.86	CH ₃	1.11	2.38, 1.25
C21/C23	27.62	CH_3	1.25	2.38 , 2.34, 1.11

H	δ _н	Int.	Mult.	J / Hz	COSY	ROESY
ОН	11.87	1H	S	-	_	5.48
ОН	11.57	0.3H	bs	-	_	5.48
H16/H18	7.24	2H	d	8.4	7.02	7.02
H15/H19	7.02	2H	d	8.4	7.24	7.24, 5.48, 1.22
H7	5.48	1H	s	-	_	11.87, 11.57, 7.02
H4a/H12a	2.46	2H	d	17.4	2.32	2.41, 2.38, 2.32, 1.22, 1.11
H6a/H10a	2.41	2H	d	10.2	2.38	2.46, 2.38, 2.32, 1.22, 1.11
H6b/H10b	2.38	2H	d	10.2	2.41	2.46, 2.41. 2.32, 1.22, 1.11
H4b/H12b	2.32	2H	d	17.4	2.46	2.46, 2.41, 2.38, 1.22, 1.11
H21/H23	1.22	6H	s	_	_	7.02, 2.46, 2.41, 2.38, 2.32, 1.11
H20/H22	1.11	6H	S	-	_	2.46, 2.41, 2.38, 2.32, 1.22

Table S7. ¹H NMR assignment (CDCl₃, 600 MHz) of compound 3d

Table S8. ¹³C NMR assignment (CDCl₃, 150 MHz) of compound 3d

c	δ_{c}	APT	HSQC	НМВС
C1/C9	190.84	С	_	5.48, 2.46 , 2.38
C3/C13	189.63	С	-	11.87, 5.48, 2.41 , 2.32
C14	136.91	С	-	7.24, 5.48
C17	131.80	С	-	7.24, 7.02 , 5.48
C15/C19	128.56	CH	7.24	7.24
C16/C18	128.41	CH	7.02	7.02, 5.48
C2/C8	115.55	С	_	11.87, 5.48 , 2.46 , 2.41, 2.38 , 2.32
C6/C10	47.25	CH ₂	2.41, 2.32	11.87 , 2.46 , 2.38, 1.22 , 1.11
C4/C12	46.64	CH_2	2.48, 2.36	2.41 , 2.32, 1.22 , 1.11
C7	32.62	CH	5.48	7.02
C5/C11	31.63	С	-	2.46, 2.41, 2.32, 1.22, 1.11
C20/C22	29.80	CH ₃	1.11	2.46, 2.41, 2.38 , 2.32 , 1.22
C21/C23	27.63	CH ₃	1.22	2.46, 2.41, 2.38, 2.32, 1.11

Table S9. ¹H NMR assignment (CDCl₃, 600 MHz) of compound 3e

Н	$\delta_{\mathbf{H}}$	Int.	Mult.	J/Hz	COSY	ROESY
ОН	11.80	1H	S	_	_	-
ОН	11.55	0.2H	bs	_	_	_
H16/H18	8.14	2H	d	8.4	7.25	7.25
H15/H19	7.25	2H	d	8.4	8.14	8.14, 5.55, 1.24
H7	5.55	1H	S	-	-	7.25
H4a/H12a	2.50	2H	d	17.4	2.41	1.24, 1.12
H6a/H10a	2.43	2H	d	16.2	2.34	1.24, 1.12
H6b/H10b	2.41	2H	d	17.4	2.50	1.24, 1.12
H4b/H12b	2.34	2H	d	16.2	2.43	1.24, 1.12
H21/H23	1.24	6H	S	_	_	7.25, 2.50, 2.43 , 2.41 , 2.34
H20/H22	1.12	6H	s	_	_	2.50, 2.43 , 2.41 , 2.34

С	δ _c	APT	HSQC	НМВС
C1/C9	191.14	С	_	5.55, 2.50, 2.41
C3/C13	189.78	С	_	11.80, 5.55 , 2.43 , 2.34
C14	146.73	С	-	8.14, 5.55
C17	146.34	С	-	7.25
C15/C19	127.85	СН	7.25	7.25, 5.55
C16/C18	123.72	СН	8.14	8.14, 5.55
C2/C8	115.12	С	-	11.80, 5.55 , 2.50 , 2.43 , 2.42 , 2.34
C6/C10	47.20	CH_2	2.43. 2.34	11.80, 2.50, 1.24 , 1.12
C4/C12	46.61	CH_2	2.50, 2.41	2.43, 2.41, 2.34, 1.24 , 1.12
C7	33.47	СН	5.55	7.25
C5/C11	31.68	С	_	2.50, 2.43, 2.41, 2.34, 1.24 , 1.12
C20/C22	29.50	CH ₃	1.12	2.50, 2.43, 1.41 , 2.34 , 1.24
C21/C23	27.68	CH ₃	1.24	2.50, 2.43, 1.41, 2.34 , 1.12

Table S10. ¹³C NMR assignment (CDCl₃, 150 MHz) of compound 3e

Table S11. ¹H NMR assignment (CDCl₃, 600 MHz) of compound 3f

H	$\delta_{\rm H}$	Int.	Mult.	J / Hz
ОН	11.58	2Н	S	-
H7	3.16	2H	S	-
H4 e H12	2.30	4H	d	16.2
H6 e H10	2.28	4H	d	16.2
H20/H21 H22/H23	1.05	12H	s	_

Table S12: ¹³C NMR assignment (CDCl₃, 150 MHz) of compound 3f

С	δ _c	APT	HSQC	НМВС
C1/C3/C9/C13	189.76	С	-	3.16, 2.30, 2.28
C2/C8	113.67	С	-	3.16 , 2.30, 2.28
C4/C6/C10/C12	46.18	CH_2	2.30, 2.28	1.05
C5/C11	31.98	С	-	2.30, 2.28, 1.05
C20/C22	29.73	CH_2	1.05	2.30, 2.28, 1.05
C21/C23	27.27	CH_2	1.05	2.30, 2.28, 1.05
C7	16.14	CH ₃	3.16	_

|--|

Table S13. ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR spectra (CDCl₃, 150 MHz) of 2,2'-[(2,4-dinitrophenyl)methylene] bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (**3g**)

	NMR spec	etra at 20 °C	NMR spectra at 50 °C		
Atom	$\delta_{\rm H}$	$\delta_{\rm c}$	$\delta_{_{ m H}}$	$\delta_{\rm C}$	
ОН	11.49*	-	11.44*	_	
1/9	-	191.54*	-	190.76	
2/8	_	114.20	_	114.30	
3/13	-	189.95*	-	190.76	
4/12	2.20*	46.52	2.39*	46.88	
5/11	-	32.24*	-	32.24	
6/10	2.60*	46.96*	2.39*	46.88	
7	6.06	30.94	6.07	31.06	
14	-	140.15	-	140.22	
15	-	149.56	-	149.74	
16	8.40	119.94	8.40	119.91	
17	-	146.37	-	146.55	
18	8.34	125.81	8.32	125.73	
19	7.46	131.13	7.48	131.17	
20/22	1.20*	28.21*	1.10	28.49	
21/23	0.80*	28.78*	1.10	28.49	

*Broad signal

Table S14. ¹H NMR Chemical Assignment (CDCl₃, 600 MHz) of compounds 3a-g

Hydrogen	3 a	3b	3c	3d	3e	3f	3g
OH Side A	11.95	11.93	11.91	11.87	11.80	11.56	11.49*
OH Side B	11.57*	11.58*	11.57*	11.57*	11.55*	11.56	11.49*
R group	2.91	3.78	-	-	_	-	-
H15	6.95	7.01	7.11	7.02	7.25	_	
H16	6.67	6.82	7.28	7.24	8.14	-	8.40
H17	-	_	7.18	_		-	-
H18	6.67	6.82	7.28	7.24	8.14	-	8.34
H19	6.95	7.01	7.11	7.02	7.25	-	7.46
H20/H22	1.10	1.11	1.11	1.11	1.12	1.02	1.20*
H21/H23	1.24	1.23	1.25	1.22	1.24	1.04	0.80*
H6a/H10a	2.40	2.40	2.40	2.41	2.43	2.28	2.60*
H6b/H10b	2.38	2.38	2.38	2.38	2.41	2.26	2.60*
H4a/H12a	2.45	2.46	2.49	2.46	2.50	2.28	2.20*
H4b/H12b	2.32	2.32	2.34	2.32	2.34	2.26	2.20*
H7	5.48	5.48	5.55	5.48	5.55	3.14	6.06

*Broad signals

Carbon	3 a	3b	3c	3d	3e	3f	3g
R group	40.91	54.41	_	_	_	_	_
C14	125.79	130.02	138.28	136.91	146.73	_	140.15
C15	127.68	127.99	126.99	128.56	127.85	_	149.56
C16	112.88	113.85	128.42	128.41	123.72	_	119.94
C17	148.95	157.79	126.05	131.80	146.34	_	146.36
C18	112.88	113.85	128.42	128.41	123.72	_	125.81
C19	127.68	127.99	126.99	128.56	127.85	_	131.13
C20/C22	29.91	29.88	29.86	29.80	29.50	29.73	28.21*
C21/C23	27.54	27.57	27.62	27.63	27.68	27.27	28.78*
C3/C13	189.46	189.56	189.60	189.63	189.78	189.76	189.95*
C6/C10	47.29	47.27	47.28	47.25	47.20	46.18	46.96*
C5/C11	31.57	31.59	31.63	31.63	31.68	31.98	32.24*
C4/C12	46.66	46.69	46.67	46.64	46.61	46.18	46.52
C1/C9	190.41	190.61	190.67	190.84	191.14	189.76	191.54*
C2/C8	116.15	116.00	115.81	115.55	115.12	113.67	114.20
C7	32.04	32.23	32.96	32.62	33.47	16.14	30.94

Table S15. ¹³C NMR Chemical Shift Assignment (CDCl₃, 150 MHz) of compounds 3a-g

*Broad signals

Table S16. Molecular modeling data (B3LYP/6-311+G(d,p)) of 2,2'-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-ones)

Angle	3 a	3b	3c	3d	3e	3f	3g
C2C7C8	116.15	113.52	113.54	113.57	113.89	116.94	113.13
H7C7C14	103.01	102.72	102.38	102.47	101.91	-	102.58
H7C7C2	104.83	104.82	104.97	105.18	105.06	107.57	105.15
H7C7C8	103.41	103.32	103.38	103.25	103.36	109.06	103.73
C2C7C14	114.74	114.96	114.93	114.68	115.11	_	114.73
C8C7C14	115.27	115.43	115.54	115.64	115.31	-	115.60
C1C2C7	120.77	120.59	120.46	120.16	120.21	122.91	120.22
C7C8C13	125.29	125.53	125.58	125.61	125.48	117.75	126.56
C3C2C7	121.00	121.04	121.12	121.51	121.17	117.52	120.92
C7C8C9	116.15	115.99	115.90	115.79	115.84	122.82	114.96
C1C2C7C8	83.16	84.53	84.07	83.57	84.24	89.90	87.84
C2C7C8C13	84.17	82.23	82.71	83.32	82.57	88.86	73.66
C3C2C7C8	91.85	90.98	91.20	92.06	90.79	89.83	85.79
C2C7C8C9	94.22	94.85	94.39	94.00	94.45	90.56	99.66
C1C2C7C14	51.42	51.46	52.07	52.49	52.14	-	47.73
C13C8C7C14	52.18	53.55	53.15	52.30	53.71	-	61.50
C3C2C7H7	20.32	21.05	21.00	20.12	21.60	33.20	26.74
C9C8C7H7	18.81	18.09	18.77	19.34	18.95	31.71	13.72

 $\label{eq:sigma} \textbf{Table S17}. Natural atomic bound charges (Q_{NPA}) (B3LYP/6-311+G(d,p)) of the carbon atoms connecting the phenyl ring with the 1,3-dicarbonyl groups are specified with the 1,3-dic$

	3 a	3b	3c	3d	3e	$R^2 Q_{NPA} vs \delta_C$	$\mathbf{R}^2 \mathbf{Q}_{NPA} \mathbf{vs} \sigma_p$
C1	0.564	0.565	0.565	0.565	0.566	0.8860	0.9131
C2	-0.243	-0.244	-0.245	-0.247	-0.252	0.9743	0.8765
C3	0.476	0.476	0.476	0.478	0.483	0.6957	0.7066
C7	-0.267	-0.270	-0.274	-0.273	-0.279	0.9687	0.9435
C8	-0.253	-0.254	-0.254	-0.256	-0.255	0.5564	0.5985
C9	0.562	0.563	0.564	0.565	0.566	0.9504	0.9727
C13	0.480	0.479	0.480	0.479	0.483	0.3333	0.3747

 $\label{eq:stable} \textbf{Table S18}. \ Calculated \ percentage \ of \ molecules \ (6-311+G(d,p)) \ for \ each \ conformation$

Benzene Ring Rotation		Dimedone R	Dimedone Rings Rotation		-O oscillation	Side B OHO oscillation	
Rel. E. (kJ/mol)	Molecules %	Rel. E. (kJ/mol)	Molecules %	Rel. E. (kJ/mol)	Molecules %	Rel. E. (kJ/mol)	Molecules %
16.23	2.0	55.80	0.9	2.04	8.8	3.91	4.7
12.50	2.6	19.74	2.6	0.89	13.8	1.81	9.2
6.53	5.0	0.79	42.3	0.04	15.0	0.49	12.3
1.92	16.9	0.00	50.7	0.01	18.0	0.03	16.7
0.00	32.5	96.73	0.5	0.40	17.8	0.00	18.4
1.40	23.2	94.94	0.5	1.47	12.2	0.42	18.2
3.93	8.3	95.56	0.5	2.94	6.1	1.67	8.0
7.06	4.6	93.55	0.5	4.90	3.7	3.07	6.0
10.53	3.1	78.52	0.6	7.06	2.5	4.74	3.9
15.72	2.1	65.32	0.8	9.40	1.9	6.70	2.7