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Um método para detecção de adulterações de misturas de biodiesel/diesel (B5) com 
óleo de soja empregando espectrometria UV-Vis é proposto. O estudo envolve 90 amostras 
compreendendo misturas B5 com e sem a adição de óleo de soja (0,5 a 2,5% v/v). Uma 
discriminação apropriada foi obtida utilizando classificadores SIMCA (modelagem independente 
e flexível por analogia de classe), KNN (K-vizinhos mais próximos), PLS-DA (análise 
discriminante por mínimos quadrados parciais) e SPA-LDA (análise discriminante linear com 
algoritmo de projeções sucessivas).

A method for detecting adulterations of biodiesel/diesel blends (B5) with soybean oil using 
UV-Vis spectrometry is proposed. The study involves 90 samples comprising B5 blends with and 
without the addition of soybean oil (0.5 to 2.5% v/v). Suitable discrimination was achieved by 
using SIMCA (soft independent modeling of class analogy), KNN (K-nearest neighbors), PLS-DA 
(partial least squares discriminant analysis) and SPA-LDA (linear discriminant analysis with 
spectral variables selected by the successive projections algorithm) classifiers.
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Introduction

Since 2010, Brazilian regulations state that diesel fuel 
must be blended with 5% biodiesel prior to commercial 
distribution. This blend, termed B5, may have a variation 
of up to ± 0.5% (v/v) in biodiesel content, as established 
by the Brazilian national fuel authority (Agência Nacional 
de Petróleo, Gás natural e Biocombustível-ANP).1 Within 
this scenario, concerns may be raised with regard to 
adulterations of B5 blends with raw vegetable oil,2-11 which 
could be added by fuel retailers to increase profits. Such 
adulterations cause increase of engine wear12 and constitute 
a crime against the popular economy.

The analytical method recommended by ANP for 
determination of biodiesel in diesel is based on the European 

standard EN 14078.13 This method employs a single 
wavelength in the mid-infrared region, namely 5730 nm 
(1745 cm-1), which corresponds to the peak of stretching 
band of carbonyl.13 However, since this band is also found in 
vegetable oils, the reference method is unable to discriminate 
B5 blends from mixtures of diesel, biodiesel and vegetable 
oil. Such a discrimination cannot be carried out on the 
basis of refractive index, density or viscosity, either. In fact, 
diesel, biodiesel and vegetable oil all have values ranging 
from 0.82 to 0.92 kg m-3 for density14-16 at 20 °C and from 
1.4 to 1.5 for refractive index.16 A better alternative might 
lie in the use of viscosity, which exhibits distinct values for 
vegetable oil, as compared to diesel and biodiesel. Viscosity 
values for soybean oil,17 for example, range from 58.5 to 
62.2 mm2 s-1, which is substantially larger compared to diesel 
(2.0-4.5 mm2 s-1)14 and biodiesel (3.0-6.0 mm2 s-1).15 However, 
as shown in the Supplementary Information, adulterations 



UV-Vis Spectrometric Detection of Biodiesel/Diesel Blend Adulterations with Soybean Oil J. Braz. Chem. Soc.170

with up to 2.5% v/v of vegetable oil are not enough to change 
the viscosity of B5 blends in a significant manner. It is worth 
noting that an adulteration with 2.5% v/v of vegetable oil 
is not negligible, as it corresponds to 50% of the biodiesel 
content in commercial B5 blends.

In this context, much research effort has been 
devoted to the development of spectrometric methods 
for quality control of diesel/biodiesel blends with respect 
to adulterations with vegetable oil,2-11 as summarized in 
Table 1. As can be seen, the literature has been mostly 
concerned with the use of near/mid infrared spectrometry 
and spectrofluorimetry, together with chemometrics tools 
for multivariate classification or calibration. Within this 
scope, it would be interesting to investigate the possibility of 
detecting such adulterations by using UV-Vis spectrometry, 
which is a simpler and less expensive technique.18 Indeed, 
recent papers19,20 have demonstrated the feasibility of using 
UV-Vis spectrometry for classification of biodiesel samples 
with respect to the base oil employed in their production,19 
as well as for the determination of biodiesel in biodiesel/
diesel blends.20 However, the use of UV-Vis spectrometry 
for detection of vegetable oil adulterations in biodiesel/
diesel blends has not been reported in the literature.

The present paper proposes the use of UV-Vis 
spectrometry for detection of soybean oil in biodiesel/diesel  
blends. Soybean oil is the cheapest and most common 
vegetable oil found in the Brazilian market and thus 
constitutes the prime candidate for use as an adulterant. The 
proposed method is based on the discrimination of UV-Vis 
spectra of adulterated and non-adulterated blends by using 
multivariate classification techniques. More specifically, 
four techniques are compared in this investigation, namely 
SIMCA (soft independent modeling of class analogy), 
KNN (K-nearest neighbors), PLS-DA (partial least squares 

discriminant analysis) and SPA-LDA (linear discriminant 
analysis with spectral variables selected by the successive 
projections algorithm).

 

Experimental

Samples

The present work involved a total of 90 samples, 
comprising 31 biodiesel/diesel blends (B5), and 59 samples 
of B5 blends adulterated with soybean oil (OB5) in the 
range of 0.5 to 2.5% (v/v). This range corresponds to 
10-50% of the biodiesel content in commercial B5 blends. 
The diesel samples were provided by Petrobras (Cabedelo, 
Paraíba, Brazil). Soybean oils from different brands and 
lot were acquired in local supermarkets for use in the 
production of biodiesel and adulteration of the B5 blends.

The biodiesel employed in the blends was prepared 
by using the soybean oil feedstock and transesterification 
reaction via methanol route as described elsewhere.20

UV-Vis spectra acquisition

The spectra of the samples were acquired in the range 
of 430-850 nm with resolution of 1 nm by using a Perkin 
Elmer Lambda 750 spectrophotometer with optical path 
of 1 cm. Each spectrum was recorded in triplicate and 
all subsequent calculations were carried out by using the 
average spectrum of each triplicate.

Data analysis and software

The deviations of baseline of the spectra were removed 
by using an offset correction procedure, which consisted 

Table 1. Methods proposed in the literature for detection of vegetable oil adulterations in diesel/biodiesel blends

Reference Year Instrumental technique Chemometrics treatment

2 2006 NIR and MIR PCA and PLS

3 2007 NIR and Raman PCR, PLS, PLS and ANN

4 2008 MIR PLS with stepwise/forward variable selection

5 2008 Spectrofluorimetry PLS, PCA and LDA

6 2009 MIR Nonlinear CLS

7 2011 Spectrofluorimetry PCA

8 2011 NIR PCA, PLS-DA and SPA-LDA

9 2011 MIR PCA and PLS

10 2011 NIR and MIR PLS

11 2012 NIR and MIR PLS, Jack-Knife/PLS and SPA-MLR

NIR (near-infrared spectrometry); MIR (middle-infrared spectrometry); PCA (principal component analysis); PLS (partial least-squares); PCR (principal 
component regression); ANN (artificial neural networks); LDA (linear discriminant analysis); CLS (classical least squares); PLS-DA (PLS-discriminant 
analysis); SPA (successive projections algorithm); MLR (multiple linear regression).
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of shifting each spectrum in order to move its lowest 
point to zero. An exploratory analysis was then carried 
out by using Principal Component Analysis (PCA). The 
Kennard-Stone algorithm21 was subsequently employed 
to divide the spectra into training, validation and test sets 
for SIMCA, KNN, PLS-DA and SPA-LDA modelling, 
as shown in Table 2. SIMCA and KNN are standard 
classification techniques, which are described in detail in 
textbooks.22 PLS-DA is an extension of conventional PLS 
modelling in which the desired model output is expressed 
in terms of class indices (0 or 1 for two-class problems, 
for example).23,24 SPA-LDA is a recently proposed 
technique which employs SPA to select a suitable subset 
of variables for LDA classification.25 A detailed review 
of the use of SPA-LDA in analytical applications can be 
found elsewhere.26

The training samples were used to build the classification 
models. The validation samples were employed to select the 
number of principal components in SIMCA, the number K 
of neighbors in KNN, the number of factors in PLS-DA and 
the spectral variables in SPA-LDA. Finally, the test samples 
were used as an external set to assess the classification 
performance of the resulting models.

Baseline offset correction, PCA, SIMCA and PLS-DA 
were carried out in The Unscrambler 9.7. Sample set 
partitioning (Kennard-Stone algorithm), KNN and 
SPA-LDA modelling were implemented in Matlab 2010b.

In the discussion of the classification results, the terms 
negative and positive will refer to non-adulterated (B5) 
and adulterated (OB5) samples, respectively. Therefore, a 
false negative will indicate an OB5 sample classified as B5, 

whereas a false positive will indicate a B5 sample classified 
as OB5. The classification accuracy will be calculated as 
the number of correct classifications divided by the total 
number of samples in the set under consideration (training, 
validation or test). The sensitivity rate was calculated as the 
number of correct positive decisions divided by the number 
of positive cases. The specificity rate was calculated as the 
number of correct negative decisions divided by the number 
of negative cases.27,28

Results and discussion

UV-Vis spectra

Figure 1a presents typical UV-Vis spectra of diesel (D), 
biodiesel (B100), soybean oil (SO), B5 biodiesel/diesel 
blend and B5 blend adulterated with 2.5% (v/v) of soybean 
oil (OB5). Due to the chemical similarity of biodiesel with 
respect to the soybean oil used as feedstock, the B100 
and SO samples have similar spectral profiles, Moreover, 
since diesel is the majoritary component in B5 and OB5, 
the spectra of D, B5 and OB5 are also very similar, with a 
strong absorption band around 525 nm. This band can be 
ascribed to the presence of a dye marker, which is added 
to diesel fuel for identification and protection of source 
and destination.29

Figure 1b presents the UV-Vis spectra of the 90 samples 
(B5 and OB5) employed in the classification study. As can 
be seen, the spectra of the B5 samples form two clusters, 
which are most likely associated to differences in the 
composition of the diesel samples employed in the blends. 
Since the absorbance is very small at larger wavelengths 
(shaded region in Figure 1b), the study was restricted to 
range of 430-650 nm, as shown in Figure 1c.

Principal component analysis

Figure 2 presents the PC2 × PC1 score plot obtained 
from the UV-Vis spectra of the 90 samples under 

Table 2. Division of the samples into training, validation and test sets

Classes Training Validation Test

B5 15 8 8

OB5 27 16 16

Total 42 24 24

Figure 1. (a) Typical UV-Vis spectra of B5, B100, SO, D and OB5 displayed with offsets for better visualization. (b) Spectra of the 90 samples (B5 and 
OB5) employed in the classification study. (c) Spectra in the reduced range (430-650 nm).
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consideration. The percentage of explained variance is 
indicated at each axis. As can be seen, the use of PCA 
reveals some degree of separation between the B5 and 
OB5 samples, which was not apparent in Figure 1c. 
However, further chemometrics processing is still 
necessary to reduce the overlapping between the two 
classes. For this purpose, the SIMCA, KNN, PLS-DA 
and SPA-LDA classification techniques were employed, 
as reported below.

SIMCA classification

A SIMCA model was built for each class under 
consideration (B5 and OB5). Two principal components 
in each class model were sufficient to explain almost 
100% of the data variance. Figure 3a presents the resulting 
plot of discrimination power of the spectral variables. As 
can be seen, the most important variables to discriminate 

adulterated (OB5) from non-adulterated (B5) samples 
range from approximately 520 nm to 560 nm. This region 
corresponds to the main absorption band of the UV-Vis 
spectra, as discussed above. Figures 3b and 3c present the 
boundaries of the B5 and OB5 class models at the default 
significance level (5%) of the software package. As can be 
seen, the classification resulted in three false positives (B5 
samples located outside the boundaries of the B5 model in 
Figure 3b) and no false negatives (no OB5 samples located 
outside the boundaries of the OB5 model in Figure 3c). 
The absence of false negatives indicates that the proposed 
method has suitable sensitivity to detect the presence of 
adulterations. It is also worth noting that the three false 
positives corresponded to samples used in the training set. 
Therefore, all samples in the validation and test sets were 
correctly classified.

KNN classification

The number K of neighbors employed in the KNN 
classifier was selected on the basis of the number of 
classification errors in the validation set, as shown in 
Figure 4. The optimum choice was K = 1, for which no 
validation errors were obtained. As a result, all samples 
in both the training and test sets were also correctly 
classified, i.e. no false positives or false negatives were 
obtained.

PLS-DA classification

The PLS-DA model was built by assigning y-values 
0 and 1 to samples in the B5 and OB5 classes, respectively. 
In the classification stage, a threshold value of 0.5 was 
adopted to discriminate the two classes. As shown in 

Figure 2. PC2 × PC1 score plot for the overall data set.

Figure 3. (a) Discrimination power of the spectral variables in the SIMCA modeling. (b) Boundaries of the B5 class model. (c) Boundaries of the OB5 
class model.
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Figure 5, all samples in the training, validation and test 
sets were correctly classified, i.e. no false positives or false 
negatives were obtained.

SPA-LDA classification

In SPA-LDA, the optimal number of spectral variables 
is determined on the basis of a cost function related to 
the risk of incorrect classification in the test set.25,26 As 
shown in Figure 6a, the minimum of the cost is achieved 
by using three variables. These variables correspond to the 
wavelengths 439, 533 and 609 nm, as indicated in Figure 6b.

Figure 7 shows a plot of the Fisher discriminant scores 
resulting from the SPA-LDA model for the samples in 
the training, validation and test sets. As can be seen, all 
samples were correctly classified, which indicates that the 
discriminatory information conveyed by the full spectrum 
in the range 430-650 nm was preserved in the three selected 
wavelengths.

In brief, the classification results obtained in this 
investigation can be summarized as follows. The KNN, 
PLS-DA and SPA-LDA models correctly classified all 
samples in the training, validation and test sets, which 
corresponds to accuracy, sensitivity and specificity rates 
of 100%. The SIMCA model also provided accuracy, 
sensitivity and specificity rates of 100% for the validation 
and test sets. The three false positives observed in 
Figure 3b resulted in a classification accuracy of 93% in 
the training set, with a specificity rate of 80%. However, 
the sensitivity rate was 100% as no false negatives were 
obtained.

Conclusion

This paper proposed the use of UV-Vis spectrometry 
as a simpler alternative for detection of vegetable oil 
adulterations in biodiesel/diesel blends. More specifically, 
soybean oil adulterations were investigated because this 
is the cheapest and most common vegetable oil found in 

Figure 4. Number of errors in the validation set as a function of the number 
K of neighbors employed in the KNN classifier.

Figure 5. PLS-DA classification results.

Figure 6. (a) Graph of the cost function value versus the number of selected wavelengths in SPA-LDA. The optimal number of wavelengths corresponds 
to the point indicated by an arrow. (b) Average spectrum for the overall data set with indication of the four wavelengths selected by SPA-LDA.
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Figure 7. Fisher discriminant (FD) scores resulting from the SPA-LDA 
model with three wavelengths. The classification boundary is indicated 
by a horizontal line.

Brazilian market and thus constitutes the prime candidate 
for use as an adulterant.

The performance of the SIMCA, KNN, PLS-DA 
and SPA-LDA models was evaluated by using a test set 
comprising samples that were not used in the model-
building procedures. In this test set, all the adulterated 
samples were correctly discriminated from the non-
adulterated ones. It is worth noting that the adulteration 
levels employed in this investigation (0.5-2.5% v/v) are not 
negligible, as they correspond to 10-50% of the biodiesel 
content in commercial blends. However, even at the 
largest adulteration level (2.5% v/v) the physico-chemical 
parameters of the samples (viscosity, density, refractive 
index) did not display significant changes. Therefore, the 
proposed UV-Vis spectrometric method can be considered 
a useful complement to the methods usually employed by 
the regulatory agents.

Future works could be concerned with the development 
of a low-cost led-based photometer to monitor the three 
wavelengths selected by SPA-LDA in field applications. 
The possibility of building quantification models 
to determine the level of adulteration could also be 
investigated.
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