The Semisynthetic Landscape of Aphidicolin: Inspiration Towards Leishmanicidal Compounds

Gabriela B. Santos,^a Marília O. Almeida,^a Iara A. Cardoso,^a Viviane Manfrim,^a Fernanda O. Chagas,^a Juliano S. Toledo,^b Camila C. Pinzan,^b Alexandre Suman de Araujo,^c Angela K. Cruz,^b Monica T. Pupo^a and Flavio S. Emery^{*,a}

^aDepartamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto and ^bDepartamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade Medicina de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto-SP, Brazil

^cDepartamento de Física, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto-SP, Brazil

Name	MW	ΔMW	XLogP	LogP	HBA	Δ HBA	HBD	ΔHBD	TPSA_NOPS	$\Delta TPSA$	RBC	ΔRBC
Aphidicolin	338.48	-	1.12	_	4	_	4	_	80.9	_	2	_
Ref 11 compound 12	380.52	42.04	2.07	0.95	5	1	3	-1	87	6.1	4	2
Ref 11 compound 11	380.52	42.04	2.07	0.95	5	1	3	-1	87	6.1	4	2
Ref 11 compound 10	366.49	28.01	1.4	0.28	5	1	4	0	98	17.1	3	1
Ref 11 compound 9	418.61	80.13	5.81	4.69	4	0	0	-4	36.9	-44	0	-2
Ref 11 compound 8	418.61	80.13	5.81	4.69	4	0	0	-4	36.9	-44	0	-2
Ref 11 compound 7	338.48	0	1.12	0	4	0	4	0	80.9	0	2	0
Ref 11 compound 6	366.49	28.01	1.4	0.28	5	1	4	0	98	17.1	3	1
Ref 11 compound 5	354.48	16	-0.06	-1.18	5	1	5	1	101.1	20.2	2	0
Ref 11 compound 4	336.47	-2.01	1.42	0.3	4	0	3	-1	77.8	-3.1	2	0
Ref 11 compound 3	380.52	42.04	2.07	0.95	5	1	3	-1	87	6.1	4	2
Ref 11 compound 2	484.62	146.14	4.72	3.6	6	2	2	-2	85.2	4.3	4	2
Ref 11 compound 1	442.59	104.11	3.77	2.65	5	1	3	-1	79.1	-1.8	2	0
Mean differences	_	50.55	-	1.51	_	0.75	_	-1.16	-	-1.32	_	0.5
Mean	389	-	2.63	_	4.75	_	2.83	_	79.57	_	2.5	_

Table S1. Aphidicolin derivatives via biotransformation reactions and molecular properties

Table S2. Aphidicolin derivatives via semisynthesis and molecular properties

Name	XLogP	ΔLogP	HBD	ΔHBD	HBA	Δ HBA	MW	ΔMW	TPSA	ΔTPSA	RBC	ΔRBC
Aphidicolin	1.12	-	4	-	4	-	338.48	-	80.9	-	2	-
Ref 7 compound 42	4.57	3.45	0	-4	3	-1	360.53	22.05	31	-49.9	0	-2
Ref 7 compound 41	5.81	4.69	0	-4	4	0	418.61	80.13	36.9	-44	0	-2
Ref 7 compound 36	5.61	4.49	0	-4	2	-2	344.53	6.05	18.5	-62.4	0	-2
Ref 7 compound 35	4.6	3.48	0	-4	3	-1	346.5	8.02	35.5	-45.4	0	-2
Ref 7 compound 34	9.09	7.97	0	-4	0	-4	270.45	-68.03	0	-80.9	0	-2
Ref 7 compound 32	6.09	4.97	0	-4	1	-3	380.59	42.11	42.4	-38.5	3	1
Ref 7 compound 29	3.73	2.61	1	-3	5	1	378.5	40.02	72.8	-8.1	3	1
Ref 7 compound 26	2.18	1.06	2	-2	4	0	322.44	-16.04	66.8	-14.1	1	-1
Ref 7 compound 21	3.22	2.1	1	-3	4	0	320.42	-18.06	71.4	-9.5	5	3
Ref 7 compound 20	5.81	4.69	0	-4	4	0	418.61	80.13	36.9	-44	0	-2
Ref 7 compound 19	1.12	0	4	0	4	0	338.48	0	80.9	0	2	0
Ref 7 compound 18	2.25	1.13	2	-2	3	-1	306.44	-32.04	57.5	-23.4	1	-1
Ref 7 compound 17	1.12	0	4	0	4	0	338.48	0	80.9	0	2	0
Ref 7 compound 15	9.46	8.34	0	-4	0	-4	272.47	-66.01	0	-80.9	0	-2
Ref 7 compound 14	4.65	3.53	0	-4	1	-3	274.44	-64.04	17.1	-63.8	0	-2
Ref 7 compound 12	3.43	2.31	1	-3	2	-2	290.44	-48.04	37.3	-43.6	1	-1
Ref 7 compound 9	3.12	2	2	-2	2	-2	292.46	-46.02	40.5	-40.4	1	-1
Ref 7 compound 8	4.16	3.04	0	-4	5	1	390.51	52.03	69.7	-11.2	5	3
Ref 7 compound 6	2.37	1.25	2	-2	5	1	378.5	40.02	83.8	2.9	4	2
Ref 6 compound 17	3.26	2.14	2	-2	2	-2	304.47	-34.01	40.5	-40.4	1	-1
Ref 6 compound 15	4.64	3.52	1	-3	5	1	434.61	96.13	57.1	-23.8	0	-2
Ref 6 compound 14	4.6	3.48	0	-4	3	-1	346.5	8.02	35.5	-45.4	0	-2
Ref 6 compound 13	4.22	3.1	3	-1	3	-1	444.67	106.19	86	5.1	5	3
Ref 6 compound 11	3.41	2.29	0	-4	3	-1	318.45	-20.03	35.5	-45.4	0	-2
Ref 6 compound 8	3.36	2.24	0	-4	2	-2	288.42	-50.06	26.3	-54.6	0	-2
Ref 8 compound 17	4.62	3.5	0	-4	4	0	390.56	52.08	36.9	-44	0	-2
Ref 8 compound 16	2.22	1.1	2	-2	3	-1	320.47	-18.01	49.7	-31.2	1	-1
Ref 8 compound 14	4.69	3.57	1	-3	3	-1	362.55	24.07	38.7	-42.2	0	-2
Ref 8 compound 11	1.95	0.83	3	-1	3	-1	308.46	-30.02	60.7	-20.2	1	-1
Ref 8 compound 10	1.95	0.83	3	-1	3	-1	308.46	-30.02	60.7	-20.2	1	-1
Ref 8 compound 8	2.34	1.22	3	-1	3	-1	322.48	-16	60.7	-20.2	1	-1
Ref 8 compound 4	3.57	2.45	2	-2	2	-2	306.48	-32	40.5	-40.4	0	-2
Ref 8 compound 2	-0.06	-1.18	5	1	5	1	354.48	16	101.1	20.2	2	0
Ref 9 compound 22	2.34	1.22	3	-1	3	-1	322.48	-16	60.7	-20.2	1	-1
Ref 9 compound 21	3.37	2.25	2	-2	2	-2	292.46	-46.02	40.5	-40.4	1	-1
Ref 9 compound 20	1.12	0	4	0	4	0	338.48	0	80.9	0	2	0
Ref 9 compound 18	3.46	2.34	2	-2	4	0	378.55	40.07	58.9	-22	1	-1
Ref 9 compound 15	4.6	3.48	0	-4	3	-1	346.5	8.02	35.5	-45.4	0	-2
Ref 9 compound 14	3.46	2.34	2	-2	4	0	378.55	40.07	58.9	-22	1	-1
Ref 9 compound 13	2.77	1.65	1	-3	4	0	306.4	-32.08	71.4	-9.5	4	2
Ref 9 compound 12	1.65	0.53	3	-1	5	1	366.49	28.01	87	6.1	3	1
Ref 9 compound 10	2.66	1.54	2	-2	3	-1	320.47	-18.01	57.5	-23.4	1	-1
Ref 9 compound 9	2.34	1.22	3	-1	3	-1	322.48	-16	60.7	-20.2	1	-1
Ref 9 compound 8	1.76	0.64	2	-2	4	0	334.45	-4.03	74.6	-6.3	2	0
Ref 9 compound 7	1.44	0.32	3	-1	4	0	336.47	-2.01	77.8	-3.1	2	0
Ref 9 compound 3	1.27	0.15	3	-1	5	1	350.45	11.97	94.8	13.9	2	0
Ref 9 compound 1	3.05	1.93	3	-1	6	2	492.67	154.19	112.4	31.5	5	3
Ref 10 compound 25	1.95	0.83	3	-1	3	-1	320.47	-18.01	60.7	-20.2	2	0
Ref 10 compound 23	1.12	0	4	0	4	0	338.48	0	80.9	0	2	0
Ref 10 compound 22	2.34	1.22	3	-1	3	-1	322.48	-16	60.7	-20.2	1	-1
Ref 10 compound 19	1.7	0.58	3	-1	5	1	364.48	26	94.8	13.9	3	1
Ref 10 compound 17	1.72	0.6	3	-1	5	1	364.48	26	94.8	13.9	3	1

Santos et al.

Table S2. continuation

Name	XLogP	ΔLogP	HBD	ΔHBD	HBA	ΔΗΒΑ	MW	ΔMW	TPSA	$\Delta TPSA$	RBC	ΔRBC
Ref 10 compound 16	1.76	0.64	2	-2	4	0	334.45	-4.03	74.6	-6.3	2	0
Ref 10 compound 15	1.44	0.32	3	-1	4	0	336.47	-2.01	77.8	-3.1	2	0
Ref 10 compound 4	3.97	2.85	1	-3	7	3	464.59	126.11	99.1	18.2	8	6
Ref 10 compound 2	2.07	0.95	3	-1	5	1	380.52	42.04	87	6.1	4	2
Ref 7 compound 44	5.81	4.69	0	-4	4	0	418.61	80.13	36.9	-44	0	-2
Ref 7 compound 43	4.57	3.45	0	-4	3	-1	360.53	22.05	31	-49.9	0	-2
Ref 7 compound 33	4.32	3.2	0	-4	1	-3	272.42	-66.06	17.1	-63.8	0	-2
Ref 7 compound 30	4.6	3.48	1	-3	4	0	364.52	26.04	55.8	-25.1	3	1
Ref 7 compound 27	4.53	3.41	0	-4	4	0	362.5	24.02	44.8	-36.1	0	-2
Ref 7 compound 24	4.02	2.9	0	-4	6	2	448.59	110.11	71.1	-9.8	5	3
Ref 7 compound 16	3.26	2.14	2	-2	2	-2	304.47	-34.01	40.5	-40.4	1	-1
Ref 7 compound 11	4.38	3.26	0	-4	3	-1	332.48	-6	43.4	-37.5	3	1
Ref 7 compound 10	4.07	2.95	1	-3	3	-1	334.49	-3.99	46.5	-34.4	3	1
Ref 7 compound 7	1.42	0.3	3	-1	4	0	336.47	-2.01	77.8	-3.1	2	0
Ref 6 compound 20	3.05	1.93	3	-1	6	2	492.67	154.19	112.4	31.5	5	3
Ref 6 compound 10	4.65	3.53	0	-4	1	-3	274.44	-64.04	17.1	-63.8	0	-2
Ref 6 compound 5	3.42	2.3	0	-4	4	0	362.5	24.02	36.9	-44	0	-2
Ref 6 compound 4	6.02	4.9	0	-4	2	-2	358.56	20.08	18.5	-62.4	0	-2
Ref 8 compound 18	1.76	0.64	4	0	6	2	431.99	93.51	113	32.1	5	3
Ref 8 compound 15	4.62	3.5	0	-4	4	0	390.56	52.08	36.9	-44	0	-2
Ref 8 compound 13	2.34	1.22	3	-1	3	-1	322.48	-16	60.7	-20.2	1	-1
Ref 8 compound 12	3.8	2.68	2	-2	3	-1	334.49	-3.99	57.5	-23.4	2	0
Ref 8 compound 9	2.27	1.15	2	-2	3	-1	320.47	-18.01	53	-27.9	1	-1
Ref 8 compound 7	4.3	3.18	1	-3	7	3	532.69	194.21	115.3	34.4	7	5
Ref 8 compound 6	2.22	1.1	2	-2	3	-1	320.47	-18.01	53	-27.9	1	-1
Ref 8 compound 5	4.27	3.15	2	-2	5	1	476.67	138.19	92.2	11.3	4	2
Ref 8 compound 3	3.52	2.4	2	-2	2	-2	306.48	-32	40.5	-40.4	1	-1
Ref 8 compound 6	3.12	2	2	-2	2	-2	292.46	-46.02	40.5	-40.4	1	-1
Ref 9 compound 23	5.81	4.69	0	-4	4	0	418.61	80.13	36.9	-44	0	-2
Ref 9 compound 19	2.88	1.76	2	-2	4	0	350.49	12.01	66.8	-14.1	2	0
Ref 9 compound 17	3.78	2.66	1	-3	4	0	376.53	38.05	55.8	-25.1	1	-1
Ref 9 compound 16	5.4	4.28	1	-3	6	2	532.73	194.25	90.4	9.5	4	2
Ref 9 compound 11	1.97	0.85	2	-2	5	1	364.48	26	83.8	2.9	3	1
Ref 9 compound 6	2.25	1.13	2	-2	3	-1	306.44	-32.04	57.5	-23.4	1	-1
Ref 9 compound 5	1.25	0.13	3	-1	5	1	350.45	11.97	94.8	13.9	2	0
Ref 9 compound 4	1.57	0.45	2	-2	5	1	348.43	9.95	91.7	10.8	2	0
Ref 9 compound 2	4.98	3.86	2	-2	8	4	646.85	308.37	144	63.1	8	6
Ref 10 compound 24	2	0.88	3	-1	3	-1	320.47	-18.01	60.7	-20.2	2	0
Ref 10 compound 21	2.34	1.22	3	-1	3	-1	322.48	-16	60.7	-20.2	1	-1
Ref 10 compound 20	2.29	1.17	3	-1	3	-1	322.48	-16	60.7	-20.2	2	0
Ref 10 compound 18	2.02	0.9	2	-2	5	1	362.46	23.98	91.7	10.8	3	1
Ref 10 compound 14	1.42	0.3	3	-1	4	0	336.47	-2.01	77.8	-3.1	2	0
Ref 10 compound 13	2.25	1.13	2	-2	3	-1	306.44	-32.04	57.5	-23.4	1	-1
Ref 10 compound 12	1.82	0.7	3	-1	5	1	394.54	56.06	87	6.1	5	3
Ref 10 compound 11	2.42	1.3	2	-2	8	4	514.69	176.21	95.8	14.9	14	12
Ref 10 compound 10	2.42	1.3	2	-2	8	4	514.69	176.21	95.8	14.9	14	12
Ref 10 compound 7	3.55	2.43	3	-1	4	0	428.6	90.12	69.9	-11	5	3
Ref 10 compound 6	4	2.88	3	-1	4	Ő	452.74	114.26	69.9	-11	4	2
Ref 10 compound 5	2.63	1.51	3	_1	.5	1	406.56	68.08	87	6.1	5	- 3
Ref 10 compound 3	3.02	1.9	2	_2	6	2	422.55	84 07	93.1	12.2	6	4
Mean differences	_	2.14	_	-2.2	_	-0.2	_	23.6	_	-18.6	_	0.18
Mean	3.27	_	1.8	_	3.81		364.6	_	62.9	_	2.28	

Table S3. Main crystal data and refinement results for aphidicolin 1

Empirical formula	$C_{20}H_{34}O_4$
Formula weight	338.47
Temperature / K	293(2)
Wavelength / Å	0.71073
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
Unit cell dimensions	
a / Å	11.7093(1)
b / Å	11.7636(2)
c / Å	25.5233(5)
Volume / Å ³	3515.67(10)
Z, calculated density / Mg m ⁻³	8, 1.279
Absorption coefficient / mm ⁻¹	0.087
F(000)	1488
Crystal size / mm	$0.50 \times 0.3 \times 0.1$
Crystal color/shape	Colorless/rough
θ -range for data collection / degree	2.93 to 27.40
Limiting indices	$-15 \le h \le 15, -14 \le k \le 15, -32 \le l \le 33$
Reflections collected/unique	7833/7833 [R(int) = 0.0000]
Completeness / %	98.5 (to $\theta = 27.40^{\circ}$)
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Weights, w	$[\sigma^{2}(F_{o}^{2}) + (0.0518P)^{2} + 6.2056P]^{-1}P = (F_{o}^{2} + 2F_{c}^{2})/3$
Data/restraints/parameters	7833/0/445
Goodness-of-fit on F ²	1.086
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0728, wR_2 = 0.1695$
R indices (all data)	$R_1 = 0.0922, wR_2 = 0.1809$
Largest diff. peak and hole	0.292 and -0.287 e A ⁻³

Santos et al.

Figure S1. Structure of aphidicolin derivatives via biotransformation reactions.

Figure S2. Structures of semisynthetic modification of 1 in the literature (reference 6).

Ή

11

10

14

Ή

42

36

0

43

۶Ē

н

Ή

Figure S3. Structures of semisynthetic modification of 1 in the literature (reference 7).

41

30

'H

Santos et al.

Figure S4. Structures of semisynthetic modification of 1 in the literature (reference 8).

Figure S5. Structures of semisynthetic modification of 1 in the literature (reference 9).

Figure S6. Structures of semisynthetic modification of 1 in the literature (reference 10).

Figure S7. Correlation between sites of modification in semisynthetic compounds (each number over the blue dots in the graphs represents the number of examples of the correspondent modification).

Figure S8. Correlation between site modifications in biotransformation compounds (each number over the blue dots in the graphs represents the number of examples of the correspondent modification).

Figure S9. Structure of the semisynthetic compounds 3-10.

Spectroscopic data of semisynthetic compounds 3-10

Figure S10. ¹H NMR spectrum (500 MHz, CDCl₃) – compound **3**.

Figure S11. ¹³C NMR spectrum (125 MHz, CDCl₃) – compound 3.

Figure S12. HRMS-ESI – compound 3.

Figure S13. ¹H NMR spectrum (500 MHz, CDCl₃) – compound 4.

Figure S14. HRMS-ESI – compound 4.

Figure S15. ¹H NMR spectrum (500 MHz, CDCl₃) – compound 5.

Figure S16. HRMS-ESI – compound 5.

Figure S17. ¹H NMR spectrum (500 MHz, CDCl₃) – compound 6.

Figure S18. ¹³C NMR spectrum (125 MHz, CDCl₃) – compound 6.

Figure S19. HRMS-ESI – compound 6.

 $Figure \ S20. \ Infrared \ spectrum \ (KBr)-compound \ 6.$

Figure S21. ¹H NMR spectrum (500 MHz, CD₃OD) – compound 7.

Figure S22. ¹³C NMR spectrum (125MHz, CD₃OD) – compound 7.

Figure S23. HRMS-ESI – compound 7.

Figure S24. Infrared spectrum (KBr) – compound 7.

Figure S25. ¹H NMR spectrum (500 MHz, CD₃OD) – compound 8.

Figure S26. ¹³C NMR spectrum (125 MHz, CD₃OD) – compound 8.

Figure S27. HRMS-ESI – compound 8.

Figure S28. Infrared spectrum (KBr) – compound 8.

Figure S29. ¹H NMR spectrum (500 MHz, CDCl₃) – compound 9.

Figure S30. ¹³C NMR spectrum (125 MHz, CDCl₃) – compound 9.

Figure S31. HMBC spectrum (500 MHz, CD₃OD) – compound 9.

Figure S32. HRMS-ESI – compound 9.

40

30

20

PPM 160 150 140 130 120 110 100 90 80 70 60 50

Figure S34. ¹³C NMR spectrum (125 MHz, CDCl₃)– compound 10.

Figure S35. HMBC spectrum (500 MHz, CD₃OD) – compound 10.

Figure S36. HRMS-ESI – compound 10.

References

- 1. Enraf-Nonius; *Collect*; *Program for Crystal Structure Refinement;* Nonius B.V., Delft, The Netherlands, 1997.
- Otwinowski, Z.; Minor, W. In *Methods in Enzymology*, vol. 276; Carter Jr., S. W.; Sweet, R. M., eds; Academic Press: New York, 1997, pp. 307.
- Sheldrick, G.; SHELXS-97; University of Göttingen, Germany, 1997.
- Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A.; *J. Appl. Crystallogr.* 2008, *41*, 466.
- 5. Humphrey, W.; Dalke, A.; Schulten, K.; *J. Mol. Graphics* **1996**, *14*, 33.

- Brundret, K. M.; Dalziel, W.; Hesp, B.; Jarvis, J. A. J.; J. Chem. Soc., Chem. Commun. 1972, 18, 1027.
- Dalziel, W.; Hesp, B.; Stevenson. K. M.; Jarvis, J. A. J.; J. Chem. Soc., Perkin Trans. 1 1973, 2841.
- 8. Kayser, O.; Kiderlen, A. F.; Bertels, S.; Siems, K.; Antimicrob. Agents Chemother. 2001, 45, 288.
- Gordon, J. F.; Hanson, J. R.; Jarvis, A. G.; Ratcliffe, A. H.; J. Chem. Soc., Perkin Trans. 1 1992, 3019.
- Hiranuma, S.; Shimizu, T.; Yoshioka, H.; Ono, K.; Nakane, H.; Takahashi, T.; *Chem. Pharm. Bull.* **1987**, *35*, 1641.
- Ipsen, J.; Fuska, J.; Foskova, A.; Rosazza, J. P.; J. Org. Chem. 1982, 47, 3278.