Supplementary Information

J. Braz. Chem. Soc., Vol. 25, No. 10, S1-S33, 2014. Printed in Brazil - ©2014 Sociedade Brasileira de Química 0103 - 5053 \$6.00+0.00

Leishmanicidal Activity of *Brosimum glaziovii* (Moraceae) and Chemical Composition of the Bioactive Fractions by Using High-Resolution Gas Chromatography and GC-MS

Aline Coqueiro,^a Luis O. Regasini,^a Gabriel M. Leme,^a Luciana Polese,^a Camila T. Nogueira,^b Mayara L. Del Cistia,^b Marcia A. S. Graminha^b and Vanderlan da S. Bolzani^{*,a}

> ^aInstituto de Química, Universidade Estadual Paulista (Unesp), CP 355, 14801-970 Araraquara-SP, Brazil

^bFaculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (Unesp), 14801-902 Araraquara-SP, Brazil

Figure S1. Mass chromatogram obtained for the hexane fraction of leaves (a) and branches (b) of Brosimum glaziovii using GC-MS.

Figure S2. Full mass chromatogram obtained for the hexane fraction of leaves of B. glaziovii using GC-MS.

Figure S3. Expansion of the mass chromatogram (19-31 min) obtained for the hexane fraction of leaves of B. glaziovii using GC-MS.

Figure S4. Expansion of the mass chromatogram (28-47 min) obtained for the hexane fraction of leaves of B. glaziovii using GC-MS.

Figure S6. Mass spectra obtained for *n*-hexadecanoic acid ($t_{R} = 22.702 \text{ min}$).

m/z-->

Figure S12. Mass spectra obtained for 9,12,15-octadecatrienoic acid, (Z,Z,Z)- $(t_R = 24.819 \text{ min})$.

Figure S16. Mass spectra obtained for 2-methyl-Z,Z-3,13-octadecadienol ($t_R = 25.221$ min).

Figure S22. Mass spectra obtained for cyclodocosane, ethyl- ($t_R = 34.601$ min).

Figure S23. Mass spectra obtained for vitamin E ($t_R = 38.269 \text{ min}$).

Figure S24. Mass spectra obtained for campesterol ($t_R = 39.807 \text{ min}$).

Figure S26. Mass spectra obtained for β -amyrin (t_R = 41.937 min).

Figure S27. Mass spectra obtained for 4,4,6a,6b,8a,11,12,14b-octamethyl-1,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-octadecahydro-2H-picen-3-one (t_R = 42.208 min).

Figure S28. Mass spectra obtained for α -amyrin (t_R = 42.794 min).

S15

Figure S30. Mass spectra obtained for fern-7-en-3- β -ol (t_R = 44.149 min).

Figure S32. Expansion of the mass chromatogram (20-31 min) obtained for the hexane fraction of branches of B. glaziovii using GC-MS.

Figure S33. Expansion of the mass chromatogram (31-47 min) obtained for the hexane fraction of branches of B. glaziovii using GC-MS.

Scan 2380 (20.513 min): EHGB 110414.D\data.ms

Scan 2677 (22.688 min): EHGB 110414.D\data.ms

Figure S42. Mass spectra obtained for phytol ($t_R = 24.482 \text{ min}$).

Figure S46. Mass spectra obtained for 9,12,15-octadecatrienoic acid, ethyl ester, (Z,Z,Z)- $(t_R = 25.141 \text{ min})$.

S24

9000 8000

88.1 Scan 3205 (26.554 min): EHGB 110414.D\data.ms

Figure S52. Mass spectra obtained for cyclohexene, 4-(4-ethylcyclohexyl)-1-pentyl- ($t_R = 27.206 \text{ min}$).

Figure S58. Mass spectra obtained for campesterol ($t_R = 39.799$ min).

Figure S60. Mass spectra obtained for β -sitosterol ($t_R = 41.330$ min).

Figure S62. Mass spectra obtained for β -amyrin (t_R = 41.967 min).

Figure S64. Mass spectra obtained for α -amyrin (t_R = 42.772 min).

