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Métodos analíticos requerem modelos adequados de ajuste de curva para expressar 
confiabilidade. Métodos dos mínimos quadrados ordinários ou ponderado (OLSM ou WLSM, 
respectivamente) foram usados para determinar o modelo matemático mais adequado à curva 
analítica, iniciando-se do método mais simples (linear) até o quadrático. A normalidade e a 
homocedasticidade dos resíduos dos modelos foram avaliadas. Curvas analíticas foram construídas 
pela injeção de 1, 5, 10, 15 e 20 mL de sinvastatina 40 µg mL–1 (40, 200, 400, 600 e 800 ng) ou 
de 10 mL de sinvastatina 4, 20, 40, 60 e 80 µg mL–1, empregando cromatografia líquida de alta 
eficiência com detecção por arranjo de diodos (l 238 nm). Os melhores modelos foram o linear 
e o quadrático observados para os conjuntos de dados massas e concentrações, respectivamente. 
Na faixa de trabalho considerada, WLSM mostrou-se mais apropriado que OLSM. Os diferentes 
comportamentos apontam para a necessidade de uma escolha sensata do modelo mais adequado 
para expressar a curva analítica e assegurar a confiabilidade do método utilizado.

Analytical methods require adequate curve adjusting models to express reliability. The ordinary 
or weighted least squares methods (OLSM or WLSM, respectively) were used to determine the 
most adequate mathematical model for the analytical curve, beginning from the simplest method 
(linear) to quadratic. These models were evaluated with respect to normality and homoscedasticity 
of the residues. Analytical curves were built by injection of 1, 5, 10, 15 and 20 mL of simvastatin 
at 40 µg mL–1 (40, 200, 400, 600 and 800 ng) or of 10 mL of simvastatin at 4, 20, 40, 60 and 
80 µg mL–1, employing high-performance liquid chromatography with photo-diode array detection 
(l 238 nm). The best-adjusted models were the linear and the quadratic, when observed in terms 
of the dataset masses and concentrations, respectively. In the considered range, WLSM was more 
appropriate than OLSM. The different behavior indicated the need for careful selection of the most 
adequate model to express the analytical curve and the need for assuring the reliability of the used  
method.
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Introduction

Analytical methods require prior validation regardless 
of their field of application in order to obtain reliable 
results.1 As an attempt to harmonize procedures, 
guidelines for analytical validation have been established 
by international or national regulatory and accreditation 
agencies, such as ANVISA and INMETRO in Brazil.1-9 
Pharmaceutical companies must comply with these 
requirements to ensure the efficacy, safety and quality 
of drugs.10

The parameters to be evaluated during a method 
validation depend on the assay purpose.2,6,7,11 The 
commonly tested parameters are selectivity/specificity, 
accuracy, precision, response function (analytical 
curve) or linearity, range, limits of quantitation and 
of detection, and robustness.12–15 The analytical curve 
expresses the relationship between the concentrations of 
the analyte and the detected responses within a range as a 
monotonic mathematical function (linear or non-linear).16 
Linearity is the ability of the analytical procedure to obtain 
results directly proportional (or by means of well-defined 
mathematical transformations) to the concentrations of 
the analyte in a specified range.2,6,14 Until recently, the 
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analytical curve and linearity terms have been used in 
a confusing way because the function that expresses the 
response depends on the method.12,15,17 However, when 
these methods cover a wide dynamical range, more 
complex or weighted models (quadratic, logarithmic, etc.) 
may be required.12,16

Regardless of the curve behavior, the linear regression 
obtained by the ordinary least squares method (OLSM) is the 
statistical method most applied to analytical procedures.18 
Nevertheless, OLSM has been indiscriminately used 
without evaluating the model and the assumptions 
related to its residuals.19 OLSM requires the treatment of 
the outliers by using, for instance, the Jacknife test; as 
well as the verification of the assumptions of normality, 
homoscedasticity and independency of the residuals by 
the Ryan-Joiner or Jarque-Berra tests, the Levene test 
as modified by Brown-Forsy or Cook-Weisberg, and 
the Durbin-Watson test, respectively.16,18,20 At least, two 
hypotheses should be satisfied: the normality of the 
response at every concentration level and the homogeneity 
of the variances of the responses (homoscedasticity) 
in the interval of the concentrations.16 When a linear 
model (non-weighted) is not adequate for the selected 
range, the function of the analytical curve should be 
adjusted by testing mathematical models using either 
transformations in the responses or the weighted least 
squares method (WLSM).12,13 WLSM is recommended 
when non-homoscedastic data are found, for instance, 
in a wide analytical range.13,14 Regardless of the least 
squares method, a minimum of five concentration levels, 
in triplicate, is recommended to determine the linearity 
function since the uncertainty varies with the number of 
replicates.7,15

Alternative approaches to the OLSM-using weights 
(1/x, 1/x2 and 1/y) have been described in the general 
validation of bioanalytical methods,17,21,22 and applied 
to high-performance liquid chromatography (HPLC) 
coupled to mass spectrometer (LC-MS) for simvastatin 
(SIM) quantitation in human plasm.23-26 To date, the linear 
regression obtained by OLSM has been reported for the 
validation of analytical methods, such as in HPLC-UV 
used to quantify SIM in bulk27-30 or associated with other 
drugs.31-34 The adequacy of the equation that represents the 
analytical curve is the most important way to assure low 
uncertainty in UV analytical measurements.35

Thus, in this work, different strategies have been 
employed to define the best analytical curve for SIM 
quantitation. Beginning from the simplest linear model 
that uses OLSM to more complex models that use WLSM, 
different injection volumes36-38 or different concentrations 
were evaluated by HPLC-UV.

Experimental

Materials

The United States Pharmacopeia (USP) simvastatin 
reference standard (SIM RS, lot I0D382, 99.4% purity 
label claim, US Pharmacopeia, Rockville, MD, USA), 
phosphoric acid 85% (Merck, Darmstadt, Germany), 
methanol HPLC grade (Tedia, Fairfield, OH, USA), 
ultrapurified water (Direct Q3, Millipore, Bedford, MA, 
USA) and 0.45 µm filter membranes (Minisart RC15, 
Sartorius, Goettingen, Germany) were used.

Instrumentation

An HP1200 quaternary liquid chromatography 
system equipped with automatic injector, column 
oven and ultraviolet diode array detector (UV/DAD), and 
ChemStation software version Rev.B.02.01-SR1 for data 
acquisition (Agilent, Palo Alto, CA, USA) were used. 
A MaxiClean 1400 ultrasonic bath (Unique, São Paulo, 
Brazil) was employed.

Standard solutions

SIM RS stock solution at 200 mg mL–1 was prepared by 
accurately weighing 20 mg of SIM in 100 mL volumetric 
flask, followed by dilution in methanol (50 mL), sonication 
for 10 min and addition of the same solvent to complete 
the volume. Aliquots of 0.5, 2.0, 5.0, 7.5 and 10.0 mL 
were transferred from a precise burette to volumetric flasks 
(25 mL) in order to obtain SIM standard solutions at 4, 20, 
40, 60 and 80 mg mL–1 (n = 3) in methanol. All solutions were 
filtered before the injections (n = 3) in the chromatograph.

Liquid chromatography

Separation was performed in a RP-8 non-endcapped 
(LiChroCART® 250-4 LiChrospher® 100, 5 mm, Merck 
Darmstadt, Germany) column maintained at 30 °C, using 
methanol:0.1% phosphoric acid (80:20 v/v) as mobile phase 
with a flow rate of 1.5 mL min–1. The backpressure was kept 
about 125 bar. UV detector was set at l 238 nm. The injection 
volumes were 10 mL, unless mentioned otherwise.39-41

Analytical curves

SIM standard solutions (triplicate) either in variable 
injection volumes of 1, 5, 10, 15 and 20 mL from a 
40 mg mL–1 solution in methanol or in five concentrations 
were used to build the analytical curves (two or one day) 
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in the ranges of 40-800 ng and 4-80 mg mL–1 (independent 
variable, X) vs. SIM chromatographic peak areas 
(dependent variable, Y, expressed in mAU).7,15

Statistical analysis

Data analyses were performed using the statistical 
R environment according to its functions.42 Increasingly 
complex models were proposed from the simplest linear 
(lm) straight line using OLSM (lm(y~x)), and then, using 
WLSM (lm(y~x,weights)).18 The quadratic model is given 
as follows.

 (1)

where nT is the total number of observations used to 
estimate the regression coefficients b0, bL and bQ (for 
respective models), and ε is the model error.

The outliers were evaluated using the standardized (also 
called studentized) residuals (rstudent( )). Observations 
whose residues were greater than 3.0 were considered 
outliers and then removed (limited to 22% of the dataset) 
from the dataset.18,20,43

The Shapiro-Wilk (shapiro.test( )) and Levene 
(leveneTest( )) tests were used to check the assumptions of 
the model error related to normality and homoscedasticity, 
respectively.16,18,19 In addition, the normal quantile-quantile 
plot (Q-Q plot, qq.norm( )) and Bartlett test (bartlett.test( )) 
were also used to verify normality and homoscedasticity, 
respectively.19,20 The goodness-of-fit of the model was 
evaluated by the coefficient of determination (R2) and 
the mean quadratic error of prediction (MEP),20 and by 
observing the residuals vs. mass or concentration plot.13,18 
The predictions for the masses (or concentrations), which 
are obtained from the chromatographic responses through 
the model equation, were evaluated using the mean relative 
error (MRE) defined in equation 2 by

 (2)

where xi is the i-th observation for the mass (or 
concentration) and  is the prediction for xi using the 
model adjusted to all data, except for the i-th observation. 
Similar to MEP, the idea of using MRE is to have a global 
measure for the prediction error (in relative terms) of the 
model. Measurements similar to MRE are also used to 
evaluate the goodness-of-fit of regression models.44

The R script to adjust and check the quadratic model 
in equation 1 for a single day, using WLSM, is presented 

in Figure S1 in the Supplementary Information (SI)  
section.

Parallelism for SIM mass obtained in the two-day 
dataset was verified by the addition of two terms to equation 
1 resulting in the following:

 (3)

where D is an indicator for the day of observation (if 
observation is done on day 1, D = 0; if done on day 2, 
D = 1). Taking bD = 0 and bDL = 0 in the linear model 
means that the curves are the same for both days. If only 
bDL = 0, the curves are parallel but they have different 
intercepts. For the quadratic model, the curves are the same 
if bD = bDL = bDQ = 0 and are parallel if bDL = bDQ = 0. The R 
script used to adjust and check the linear version of equation 3 
with WLSM is depicted in Figure S2 (in the SI section). The 
results were statistically significant if correspondent p-values 
were less than 0.05. The weights were calculated according 
to the algorithm shown in Figure S3 (in the SI section).

Results

The data of the analytical curves obtained by injecting 
variable volumes (in days 1 and 2) or a fixed volume 
with different concentrations (in one day) in terms of the 
values of mean, relative standard deviation (RSD in %) and 
variance (s2) are shown in Table 1. The residual plots for 
SIM masses (ng) and SIM concentrations (mg mL–1) after 
adjusting the ordinary linear model to the dataset are 
depicted in Figure 1.

The regression models to determine SIM (mass or 
concentration) calculated by OLSM or WLSM (after 
outliers removal, if necessary) that showed statistically 
significant results are presented in Table 2. Q-Q plots for 
the residuals of the non-weighted and weighted models are 
shown in Figure 2.

A scatter plot of the variance and mean response 
calculated at each level of SIM mass (or concentrations) 
using the data in Table 1 is exhibited in Figure 3. The 
residual plots for SIM masses (ng) after adjusting the 
weighted linear model to the dataset obtained for both 
days and for SIM concentrations (mg mL–1) after adjusting 
the weighted quadratic model are depicted in Figure 4.

Discussion

The identification and removal of the outliers are 
important because they inflate the estimated variance, 
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increase the probability of type II error (accept the 
null hypothesis as true when it is false), influence the 
significance tests for the model parameters and frequently 
cause violation of the assumption of constant variance 
error.18 The simple linear model was initially proposed 
for the SIM dataset assayed by HPLC-UV (Table 1). 
Studentized residual plots allowed the identification of one 
outlier (point 5 in bold, Table 1), which represented 6.6% 
of the dataset obtained by the injection of variable volumes 
of 40 mg mL–1 SIM on day 1.

The studentized residual plots in Figure 1 tended 
to exhibit a conical behavior for either SIM mass or 
concentration, as described for SIM bioanalytical 
procedures.22 This behavior was clearly evidenced by the 
increase in residual variance as the level of SIM mass 
(or concentration) increased, as can be seen in Table 1. 
Since the response of SIM mass (or concentration) was 
positively correlated, the residual variance increased when 
the response mean increased, which violated the assumption 
of homoscedasticity.

After the removal of outliers (if necessary), the 
dataset adjusted to linear models yielded adequate 
values of R2 (> 0.999) and RSD (< 1.0%), greater than 
0.99986 and less than 0.85%, respectively.10,11 The 
calculated p-values (> 0.06 and > 0.18, respectively) 
obtained by the Shapiro-Wilk and Levene tests did not 
allow identification of the problems of normality and 
homoscedasticity when the linear model was applied to the 
three datasets. However, problems were detected by the 
Bartlett test for the homogeneity of variances in the dataset 
regarding SIM mass for day 1 and SIM concentrations 
(Table 2). The Q-Q plot of the linear model showed points 

Table 1. Results of peak area (Y) as a function of the variable (mass) or fixed (concentration) volumes of SIM injected in the chromatographic systema

X

Y, peak area / mAU

Day 1 Day 2

Valueb Mean RSD / % s2 Valueb Mean RSD / % s2

40 mg mL–1 SIM / mL

1 92.1; 90.7; 91.6 91.4 0.77 0.5 93.8; 92.2; 92.4 92.8 1.29 0.7

5 455.3; 451.4; 453.4 453.4 0.44 3.8 457.9; 453.6; 456.0 455.9 0.51 4.6

10 906.1; 898.4; 901.9 902.1 0.43 14.8 909.2; 902.1; 906.4 905.9 0.38 12.7

15 1359.9; 1342.4; 1347.9 1350.1 0.66 80.0 1361.1; 1351.4; 1358.1 1357.4 0.42 24.6

20 1814.5; 1786.6; 1794.3 1798.5 0.80 207.6 1811.2; 1800.9; 1809.0 1806.0 0.25 29.4

SIMc / (mg mL–1)

4 89.9; 89.3; 90.5 89.9 0.69 0.3

20 451.9; 451.6; 448.0 450.5 0.48 4.7

40 909.8; 906.4; 911,4 909.2 0.28 6.5

60 1364.8; 1380.2; 1385.3 1376.8 0.78 113.9

80 1842.1; 1826.3; 1815.4 1827.9 0.73 180.2

aChromatographic conditions: RP-8 (250 × 4 mm, 5 mm) column, 30 °C, l 238 nm, methanol:0.1% phosphoric acid (80:20 v/v), 1.5 mL min–1; beach value 
represents the average of three injections; cinjection of 10 mL; RSD: relative standard deviation; s2: variance.

Figure 1. Studentized residual plots for SIM (a) mass (40-800 ng) and 
(b) concentrations (4-80 mg mL–1) after adjusting the linear model using 
OLSM. Chromatographic conditions as in Table 1. Full black circle is 
an outlier.
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Table 2. Results obtained for linear and quadratic regression models calculated by OLSM or WLSM for SIM determination using HPLCa

SIM range Model Weightb Equation R2 RSD / % MEPc MREd Nout
e

Test statistic (p-valuef)

Levene Bartlett Shapiro-Wilk

40-800 ng

Day 1 linear 1 4.641 + 2.238x 0.99993 0.61 61.4 0.00819 1 1.33 (0.33) 10.3 (3.6 × 10–2) 0.88 (0.06)

linear 1/W 1.555 + 2.253x 0.99996 0.11 55.3 0.00586 0 0.14 (0.97) 0.51 (0.97) 0.94 (0.40)

Day 2 linear 1 3.715 + 2.255x 0.99997 0.37 14.0 0.00574 0 0.69 (0.62) 5.82 (0.21) 0.94 (0.35)

linear 1/W 2.939 + 2.258x 0.99998 0.11 13.7 0.00504 0 0.23 (0.92) 0.93 (0.92) 0.96 (0.74)

4-80 mg mL–1

linear 1 –4.760 + 22.932x 0.99986 0.85 75.5 0.01327 0 1.97 (0.18) 15.2 (4.3 × 10–3) 0.94 (0.42)

linear 1/W –1.601 + 22.742x 0.99991 0.18 112.8 0.00729 0 0.29 (0.88) 2.85 (0.58) 0.92 (0.17)

quadratic 1/W 0.206 + 22.374x + 0.008x2 0.99996 0.12 119.6 0.00621 0 0.23 (0.92) 2.06 (0.72) 0.97 (0.85)

aChromatographic conditions as in Table 1; bW: weights calculated as in Figure S3 (in the SI section); cMEP: mean quadratic error of prediction; dMRE: 
mean relative error; eNout: number of outliers; fstatistically significant if less than 0.05.

Figure 2. SIM residual Q-Q plots by HPLC-UV injection of variable volumes (n = 5) on day 1 and on day 2, and for fixed volume (10 µL) of five 
concentrations on day 1, obtained from OLSM-adjusted linear models (a, b and c); and obtained from WLSM-linear (d and e) and WLSM-quadratic (f) 
models. Points outside of the confidence limits are in black. Chromatographic conditions as in Table 1.
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outside (in black) the confidence interval for all datasets, 
as in Figures 2a, 2b and 2c. Thus, the linear models could 
not meet the OLSM assumptions, which required other 
models to fit the dataset.

The quadratic model calculated by OLSM was not 
statistically significant (p-value ≥ 0.53) when applied 
to the dataset obtained either from SIM mass for day 2 
(after removal of one outlier) or SIM concentrations. 
Although the values of R2 (> 0.99995) and RSD (< 0.54%) 
were appropriate, greater than 0.999 and less than 1.0%, 
respectively, the quadratic model calculated by OLSM was 
statistically inconclusive (p-value ≥ 0.057) when applied 
to the dataset obtained from SIM mass for day 1 (after 
removal of one outlier).10,11 Furthermore, the quality of the 
method was inadequate due to the lack of normality and 
the homoscedasticity of the model errors, as verified by 
the p-values of the Shapiro-Wilk (0.01) and Barlett (0.03) 
tests, respectively. The normality problem was confirmed 
by a corresponding Q-Q plot, which was similar to that 
mentioned in Figure 2a.

Independent on the applied model (linear or 
quadratic) and the dataset, there was at least one problem 
related to the quality of the method (homoscedasticity and/or  
normality). These variance problems are well known 
requirements for not using OLSM.18,19

A possible solution to these problems is to use weights 
in the estimation of the model coefficients, when WLSM is 
advised for heteroscedasticity cases.18 The most common 
weighting factors reported for SIM in bioanalytical 
procedures are 1/x, 1/x2 and 1/y.23–26 Alternatively, the 
variance of the responses can be leveled by transforming 
the response, for instance, by using the Box-Cox method.21

Since calculation of weights is a very important step 
for the success of the model adjustment, the relationship 
between the variance and mean of the responses for each 
SIM mass and concentration level was examined using 
scatter plots for all datasets. The aim was to predict an 
appropriate weighting factor to make residual variance 
more homogeneous.

In this case, the weights were defined as the inverse of 
the variance of the observations at the determined level of 
SIM mass (or concentration). Thus, observations taken at 
levels with larger variances have smaller weights.

Since the variance of the responses is related to 
their mean, one can adjust a linear model to estimate 
the variance of the responses through the mean of the 
responses. The relationship between the variances and 
means was clearly nonlinear (Figure 3). Residual variance 
seemed to be an exponential function of the mean of the 
responses for all dataset to a greater (day 1, SIM mass and 
SIM concentration) or lesser (day 2, SIM mass) degree. 
Therefore, the relationship between the natural logarithm 
of the variance and the mean would be linear, and as such, 
a linear regression model was adjusted to estimate the 
variances and weights. The dependent and independent 

Figure 4. Studentized residual plots obtained for SIM (a) mass (40-800 ng) 
for two days and (b) concentrations (4-80 mg mL–1), after adjusting the 
weighted linear and quadratic models, respectively. Chromatographic 
conditions as in Table 1.

Figure 3. Estimates of the variance response ( ) vs. estimates of mean 
response ( ) at each level of SIM masses (for days 1 and 2) and SIM 
concentrations (single day). Chromatographic conditions as in Table 1.
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variables were the natural logarithm of the variance of 
the responses and the mean of the responses, respectively. 
Hence, a weight was estimated for each level of SIM 
mass (or concentration). These weights were assigned 
to the three observations of each level of SIM mass (or 
concentration). Therefore, in order to correct the problems 
of the homogeneity of variance, the reciprocal of the 
variance of responses was used as a weighting factor for the 
linear and quadratic models. It was calculated as depicted 
in R script (Figure S3 in the SI section).

Initially, a weighted linear model was adjusted to the 
three datasets and no outlier was observed by the treatment 
of the studentized residuals (Table 2). The removal of 
outliers is not an ideal condition, since it reduces the scarce 
degrees of freedom of the sum of squared errors even more. 
The residual plots adjusted by the weighted linear models 
did not exhibit any conical behavior; otherwise, a random 
distribution around the value zero without any trend for SIM 
concentration (data not shown) and SIM mass datasets for 
days 1 and 2 is exhibited (Figure 4a). All models showed 
more adequate values of R2 (> 0.99991) and RSD (< 0.18) 
than those obtained with the respective non-weighted 
linear models (Table 2), thereby indicating the quality 
of the model.10,11,18 For all datasets, the p-values of the 
Shapiro-Wilk and Levene tests were greater than 0.17 and 
0.88, respectively, considering the datasets obtained from 
SIM mass, which were also more appropriate than those 
observed when the linear model was adjusted using OLSM. 
The p-values of the Bartlett test confirmed the adequate 
homogeneity of the variance for all datasets. Q-Q plots 
showed adequate distribution of the residues. The results 
were better than those observed when the simplest linear 
model was adjusted to the datasets obtained from SIM mass, 
as in Figures 2d and 2e.

Last, the fitting of the weighted quadratic model was 
only statistically significant (2.48 × 10–13) for the dataset 
obtained from SIM concentration. The residual plot 
showed minor discrepancy in the variances, suggesting 
homogeneity, as in Figure 4b. This result was confirmed by 
the adequate p-values obtained from the Levene (0.92) and 
Bartlett (0.72) tests. The best values of R2 and RSD were 
observed using the weighted quadratic model (Table 2). 
The method also exhibited appropriate normality evaluated 
by the Shapiro-Wilk test and the Q-Q plot, as shown in 
Figure 2f.

It is worth noting that Q-Q plots for the residuals of 
non-weighted models revealed problems in the assumption 
of normality, while the Q-Q plots for the weighted models 
(right column) did not show any such problems.

Further, the models using WLSM showed smaller 
MRE values than those obtained using OLSM (Table 2). 

This means that the errors in the predictions of mass (or 
concentration) were smaller when using WLSM than when 
using OLSM to estimate the regression equation.

Comparing the weighted linear equations applied to 
SIM mass determination on days 1 and 2 by ANOVA, 
no statistical difference was found between the beta 
coefficients, which means that the parallelism was 
attested (Figure S2). Thus, a single weighted linear curve 
expressed by y = 1.885 + 2.285x with R2 0.99996 and 
RSD 0.12% could be used to determine SIM mass. This 
dataset also showed adequate normality (Shapiro-Wilk 
p-value 0.59) and homoscedasticity (Levene and Bartlett 
p-values 0.36 and 0.81, respectively).

In this study, the use of mass or concentration in the 
construction of analytical curves seemed to influence 
the model, as long as linear and quadratic fittings were, 
respectively, observed. Independent on the mass or 
concentration, it was observed that WLSM was adequate 
for curve fitting, unlike OLSM, due to the wide employed 
interval (which varied between 10 and 200% of the 
analytical range) as it had been intentionally designed 
for future drug dissolution studies.13,14 Furthermore, the 
suitability of WLSM was previously suggested by the 
removal of less outlier observations in comparison to 
OLSM. The difference in the models can be explained by the 
error associated with the standard dilutions. This error was 
more relevant when working with distinct concentrations, 
as in the present case expressed by quadratic fitting. Under 
variable volumes, the dilution error was less significant as 
it was substituted by the injection error, exemplified in the 
case of linear fitting.

Conclusions

As long as the good laboratory practice and validation 
criteria are fulfilled, the most adequate model to express the 
relationship between mass or concentration and its response 
should be selected considering the assumptions of the least 
squares method related to the variance of the residues. The 
possibility of the mass or concentration influencing models 
differently needs to be noted. Generally, the simplest 
linear model adjusted by OLSM should preferably be 
adopted. However, when OLSM does not show adequacy 
to express the relationship between variables, the source of 
heteroscedasticity should be investigated before leveling the 
response variances by WLSM. Then, a question arises as to 
what can be an alternative for the adjustment of the model. 
In this case, the choice of an appropriate weighting factor 
is a better alternative than using response transformations 
(inversion, square root, square inversion, etc.) since they can 
make the model more difficult to both interpret and apply. 
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Therefore, the analyst should be careful when making a 
choice and avoid misleading interpretations of data.

Supplementary Information

Supplementary data (R scripts) are available free of 
charge at http://jbcs.sqt.org.br as a PDF file.
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