

Svetlana Marković,^a Violeta Marković,^a Milan D. Joksović,^a Nina Todorović,^b Ljubinka Joksović,^{*,a} Vladimir Divjaković^c and Snežana Trifunović^d

^aDepartment of Chemistry, Faculty of Science, University of Kragujevac, 12 R. Domanovića, 34000 Kragujevac, Serbia

^bInstitute for Chemistry, Technology and Metallurgy, 12 Njegoševa, 11000 Belgrade, Serbia

^cDepartment of Physics, University of Novi Sad, 3 Trg D.Obradovića, 21000 Novi Sad, Serbia

^dFaculty of Chemistry, University of Belgrade, 16 Trg Studentski, PO Box 158, 11000 Belgrade, Serbia

IR spectra of 2_{A-F}

Figure S1. IR spectrum of 2_{A} (KBr disc).

*e-mail: ljubinka@kg.ac.rs

Figure S2. IR spectrum of 2_B (KBr disc).

Figure S3. IR spectrum of $2_{\rm C}$ (KBr disc).

Figure S4. IR spectrum of 2_{D} (neat).

Figure S5. IR spectrum of 2_E (neat).

Figure S6. IR spectrum of $2_{\rm F}$ (neat).

NMR spectra of 2_{A-F}

Figure S7. ¹H NMR spectrum of 2_A (CDCl₃, 500 MHz).

Figure S9. DEPT spectrum of 2_A (CDCl₃, 125 MHz).

Figure S10. COSY spectrum of 2_A (CDCl₃, 500 MHz).

Figure S11. HSQC spectrum of 2_A (CDCl₃, 500 MHz).

Figure S12. HMBC spectrum of 2_A (CDCl₃, 500 MHz).

Figure S13. NOESY spectrum of 2_A (CDCl₃, 500 MHz).

Figure S15. ¹³C NMR spectrum of 2_B (CDCl₃, 125 MHz).

Figure S17. ¹³C NMR spectrum of $2_{\rm C}$ (CDCl₃, 125 MHz).

Figure S19. ¹³C NMR spectrum of 2_D (CDCl₃, 125 MHz).

Figure S21. ¹³C NMR spectrum of 2_E (CDCl₃, 125 MHz).

2-(1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ylidene) aminoethanol (2_{a}) : a crude product was purified using chloroform/ethyl acetate 1:1 as an eluent to give 2_{A} . White powder; yield: 0.771 g (73%); mp 65 °C; IR (KBr) v/cm⁻¹ 3418 v(O-H), 2955, 2931 and 2870 v(C-H), 1682 v(C=N); ¹H NMR (500 MHz, CDCl₃) δ 0.75 (s, 3H, CH₃ (C9)), 0.93 (s, 3H, CH₃ (C8)), 0.97 (s, 3H, CH₃ (C10)), 1.21 (dtd, 1H, J 12.25, 9.00, 4.50 Hz, H_a5), 1.35 (dtd, 1H, J 13.00, 9.00, 4.50 Hz, H₂6), 1.67 (td, 1H, J 12.25, 4.50 Hz, H₂6), 1.84 (d, 1H, J 17.00 Hz, H₂3), 1.89 (m, 1H, H₂5), 1.95 (t, 1H, J 4.50 Hz, H4), 2.35 (dt, 1H, J 17.00, 3.50 Hz, H₂3), 3.31 $(m, 2H, N-CH_2)$, 3.59 (br s, 1H, exchangeable with D₂O, OH), 3.79 (td, 2H, J 6.00, 0.50 Hz, CH₂-O); ¹³C NMR (125 MHz, CDCl₃) δ 11.22 (C10), 18.81 (C8), 19.45 (C9), 27.28 (C5), 32.02 (C6), 35.94 (C3), 43.69 (C4), 47.05 (C7), 53.75 (C1 and C11, overlapped signals), 62.04 (C12), 184.53 (C=N). Anal. calcd. for $C_{12}H_{21}NO$ (195.31 g mol⁻¹): C, 73.80; H, 10.84; N, 7.17; found: C, 73.77; H, 10.85; N, 7.14.

N-(1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ylidene) ethane-1,2-diamine (2_{B}) : a crude product was purified by column chromatography on silica gel. First, ethyl acetate was applied to eluate 2_{c} . Then, solvent was changed and 2_{B} was obtained using methanol as an eluent. White powder; yield: 0.641 g (61%); mp 49 °C; IR (KBr) v/cm⁻¹ 3435 v(N–H), 2956, 2921 and 2873 v(C–H), 1686 v(C=N); ¹H NMR (500 MHz, CDCl₃) δ 0.75 (s, 3H, CH₃ (C9)), 0.93 (s, 3H, CH₃ (C8)), 0.97 (s, 3H, CH₃ (C10)), 1.20 (dtd, 1H, J 12.25, 9.00, 4.50 Hz, H₂5); 1.34, (dtd, 1H, J 13.00, 9.00, 4.50 Hz, H_a6), 1.67 (td, 1H, J 12.25, 4.50 Hz, H_e6), 1.85 (d, 1H, J 17.00 Hz, H_a3), 1.86 (m, 1H, H_a5), 1.94 (t, 1H, J 4.50 Hz, H4), 1.98 (br s, 2H, exchangeable with D₂O, NH₂), 2.35 (dt, 1H, J 17.00, 3.50 Hz, H₂3), 2.93 (m, 2H, CH₂-N), 3.25 (m, 2H, N-CH₂); ¹³C NMR (125 MHz, CDCl₃) δ 11.24 (C10), 18.78 (C8), 19.42 (C9), 27.29 (C5), 32.11 (C6), 35.70 (C3), 42.48 (C12), 43.67 (C4), 46.79 (C7), 53.55 (C1), 54.60 (C11), 184.53 (C=N). Anal. calcd. for C₁₂H₂₂N₂ (194.32 g mol⁻¹): C, 74.17; H, 11.41; N, 14.42; found: C, 74.97; H, 11.71; N, 14.76.

 N^{1} -(1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ylidene)- N^{2} -(1,7,7-trimethylbicyclo [2.2.1]heptan-2-ylidene)ethane-1,2-diamine (**2**_c): a crude product was purified using ethyl acetate as an eluent to give **2**_c. White powder; yield: 0.261 g (29%); mp 51 °C; IR (KBr) v/cm⁻¹ 2956, 2921 and 2872 v(C–H), 1686 v(C=N); ¹H NMR (500 MHz, CDCl₃) δ 0.74 (s, 3H, CH₃ (C9)), 0.91 (s, 3H, CH₃ (C8)), 0.93 (s, 3H, CH₃ (C10)), 1.19 (dtd, 1H, *J* 12.25, 9.00, 4.50 Hz, H₃5), 1.33

(dtd, 1H, *J* 13.00, 9.00, 4.50 Hz, H_a6), 1.64 (td, 1H, *J* 12.25, 4.50 Hz, H_e6), 1.87 (m, 1H, H_e5), 1.90 (d, 1H, *J* 17.00 Hz, H_a3), 1.92 (t, 1H, *J* 4.50 Hz, H4), 2.41 (dt, 1H, *J* 17.00, 3.50 Hz, H_e3), 3.44, (m, 1H, N–CH₂), 3.51 (m, 1H, N–CH₂); ¹³C NMR (125 MHz, CDCl₃) δ 11.41 (C10), 18.92 (C8), 19.65 (C9), 27.47 (C5), 32.21 (C6), 35.85 (C3), 43.85 (C4), 46.87 (C7), 53.21 (C11), 53.47 (C1), 184.53 (C=N). Anal. calcd. for C₂₂H₃₆N₂ (328.54 g mol⁻¹): C, 80.43; H, 11.05; N, 8.53; found: C, 80.74; H, 11.18; N, 8.86.

N-(1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ylidene)aniline (2_{p}) : a crude product was purified using chloroform as an eluent to give 2_{p} . Yellowish oil; yield: 0.195 g (16%); IR (neat) v/cm $^{-1}$ 3079 v(C–H) $_{\!Ar}\!\!\!\!$, 2958, and 2873 v(C–H), 1685 v(C=N); ¹H NMR (500 MHz, CDCl₃) δ 0.87 (s, 3H, CH₃) (C9)), 0.97 (s, 3H, CH₃ (C8)), 1.09 (s, 3H, CH₃ (C10)), 1.24 (m, 1H, H_a5), 1.53 (dtd, 1H, J 12.50, 9.50, 4.00 Hz, H_a6), 1.73 (d, 1H, J 18.00 Hz, H_a3), 1.78 (m, 1H, H_e6), 1.88 (m, 1H, H_o5), 1.89 (d, 1H, J 4.00 Hz, H4), 2.19 (dt, 1H, J 18.00, 4.00 Hz, H_a3), 6.73 (dd, 2H, J 7.50, 1.00 Hz, o-phenyl), 7.02 (tt, 1H, J 7.50, 1.00 Hz, p-phenyl), 7.27 (td, 2H, J 7.50, 1.00 Hz, m-phenyl); ¹³C NMR (125 MHz, $CDCl_3$) δ 11.21 (C10), 19.02 (C8), 19.54 (C9), 27.42 (C5), 32.05 (C6), 36.19 (C3), 43.78 (C4), 47.14 (C7), 53.90 (C1), 119.42 (C12), 122.99 (C14), 128.86 (C13), 152.26 (C11), 184.72 (C=N). Anal. calcd. for C₁₆H₂₁N (227.35 g mol⁻¹): C, 84.53; H, 9.31; N, 6.16; found: C, 84.74; H, 9.52; N, 6.41.

N-(1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ylidene) hexan-1-amine (2_E) : a crude product was purified using chloroform/ethyl acetate, 9.5:0.5 as an eluent to give $2_{\rm E}$. Yellowish oil; yield: 0.327 g (26%); IR (neat) v/cm⁻¹ 2954, 2927, 2872 and 2857 v(C-H), 1686 v(C=N); ¹H NMR (500 MHz, CDCl₃) δ 0.75 (s, 3H, CH₃ (C9)), 0.87 (t, 3H, J 6.50 Hz, CH₃ (C16)), 0.92 (s, 3H, CH₃ (C8)), 0.97 (s, 3H, CH₃ (C10)), 1.19 (dtd, 1H, J 12.25, 9.00, 4.50 Hz, H₂5), 1.29 (m, 6H, (C13, C14, C15)), 1.36 (dtd, 1H, J 13.00, 9.00, 4.50 Hz, H₂6), 1.58 (m, 2H, (C12)), 1.65 (td, 1H, J 12.25, 4.50 Hz, H_a6), 1.83 (d, 1H, J 17.00 Hz, H_a3), 1.85 (m, 1H, He5), 1.92 (t, 1H, J 4.50 Hz, H4), 2.33 (dt, 1H, J 17.00, 3.50 Hz, H_a3), 3.20 (m, 2H, CH₂ (C11)); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3) \delta 11.39 (C10), 13.95 (C16), 18.89 (C8),$ 19.45 (C9), 22.56 (C15), 27.14 (C13), 27.44 (C5), 30.43 (C12), 31.66 (C14), 32.15 (C6), 35.28 (C3), 43.78 (C4), 46.74 (C7), 52.32 (C11), 53.31 (C1), 181.13 (C=N). Anal. calcd. for C₁₆H₂₉N (235.41 g mol⁻¹): C, 81.63; H, 12.42; N, 5.95; found: C, 81.94; H, 12.58; N, 6.13.

N-(1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ylidene) cyclohexanamine (2_F): a crude product was purified using chloroform as an eluent to give 2_F . Yellowish oil; yield:

0.175 g (14%); IR (neat) v/cm⁻¹ 2925 and 2853 v(C–H), 1685 v(C=N); ¹H NMR (500 MHz, CDCl₃) δ 0.75 (s, 3H, CH₃ (C9)), 0.91 (s, 3H, CH₃ (C8)), 0.96 (s, 3H, CH₃ (C10)), 1.16-1.36 (m, 5H, H_a5, 3H (Cy), H_a6), 1.44 (m, 2H, Cy), 1.54 (m, 2H, Cy), 1.64 (m, 2H, 1H, Cy, H_e6), 1.76 (m, 2H, Cy), 1.83 (m, 1H, H_e5), 1.86 (d, 1H, *J* 17.00 Hz, H_a3), 1.90 (t, 1H, *J* 4.50 Hz, H4), 2.36 (dt, 1H, *J* 17.00, 4.00 Hz, H_e3),

3.08 (m, 1H, CH (C11)); ¹³C NMR (125 MHz, CDCl₃) δ 11.51 (C10), 18.90 (C8), 19.34 (C9), 24.99 and 25.00 (C13 and C13'), 25.59 (C14), 27.45 (C5), 32.14 (C6), 33.23 and 33.30 (C12 and C12'), 34.88 (C3), 43.72 (C4), 46.51 (C7), 52.87 (C1), 60.45 (C11), 178.58 (C=N). Anal. calcd. for C₁₆H₂₇N (233.40 g mol⁻¹): C, 82.34; H, 11.66; N, 6.00; found: C, 82.67; H, 11.71; N, 6.11.

Experimental and calculated geometrical parameters of 2_A

Figure S24. Crystal structure (left) and calculated structure of 2_A in the gas-phase.

Table S1. Experimenta	and calculated	bond distances	between	heavy
atoms in 2_A . See Figure	S1 for atom labe	eling		

Bond distance / Å	Experimental	Calculated	
C1–C6	1.5135	1.5222	
C1–N	1.4710	1.4556	
C2–C3	1.5190	1.5356	
C2-C10	1.5289	1.5437	
C3–C4	1.5188	1.5288	
C3–N	1.2693	1.2666	
C4–C5	1.5688	1.5758	
C4–C7	1.5211	1.5175	
C4–C12	1.5495	1.5633	
C5–C8	1.5343	1.5366	
C5–C9	1.5292	1.5389	
C5-C10	1.5454	1.5619	
C6–O	1.4090	1.4324	
C10-C11	1.5452	1.5466	
C11-C12	1.5334	1.5590	

Table S2. Experimental and calculated bond angles between heavy atoms	\$
in 2_{A} . See Figure S1 for atom labeling	

Bond angle / degree	Experimental	Calculated
C1-C6-O	109.8	108.4
C1-N-C3	118.4	119.9
C2-C3-N	129.8	130.4
C2-C10-C5	102.7	102.6
C2-C10-C11	106.1	106.8
C3-C2-C10	102.4	101.8
C3-C4-C5	100.4	100.5
C3-C4-C7	115.8	115.0
C3-C4-C12	104.2	104.2
C4-C5-C8	114.3	114.5
C4-C5-C9	113.1	113.5
C4-C5-C10	93.5	93.4
C4-C12-C11	104.6	104.2
C5-C4-C7	117.1	118.6
C5-C4-C12	101.7	101.8
C5-C10-C11	102.7	102.9
C6-C1-N	111.9	110.8
C7-C4-C12	115.4	114.5
C8-C5-C9	108.2	107.6
C8-C5-C10	113.6	113.7
C9-C5-C10	113.8	113.9
<u>C10-C11-C12</u>	102.8	102.8

Dihedral angle / degree	Experimental	Calculated	Dihedral angle / degree	Experimental	Calculated
C1-N-C3-C4	179.0	179.4	C5-C4-C3-N	145.0	144.9
C2-C3-C4-C5	35.0	34.5	C7-C4-C5-C8	62.2	62.1
C2-C3-C4-C7	162.1	163.2	С7-С4-С5-С9	62.2	62.0
C2-C3-C4-C12	70.0	70.6	C7-C4-C5-C10	180.0	180.0
C2-C10-C11-C12	70.6	71.1	C7-C4-C12-C11	160.9	162.7
C3-C2-C10-C5	35.1	35.7	C8-C5-C10-C2	173.3	174.0
C3-C2-C10-C11	72.4	72.2	C8-C5-C10-C11	63.2	63.2
C3-C4-C5-C8	171.6	171.7	C9-C5-C10-C2	62.3	62.4
C3-C4-C5-C9	64.0	64.3	C9-C5-C10-C11	172.4	173.1
C3-C4-C5-C10	53.8	53.6	C10-C2-C3-N	179.5	179.7
C3-C4-C12-C11	71.0	70.8	C12-C4-C5-C9	171.0	171.4
C4-C5-C10-C2	54.8	55.3	C12-C4-C5-C8	64.6	64.6
C4-C5-C10-C11	55.2	55.5	C12-C4-C5-C10	53.2	53.4
C5-C4-C12-C11	33.0	33.4	C12-C4-C3-N	110.0	109.9
C5-C10-C11-C12	36.8	36.6	N-C1-C6-O	70.3	71.8

Table S3. Experimental and calculated values for selected dihedral angles in $\mathbf{2}_{A}$. See Figure S1 for atom labeling

Results of DFT calculations

Figure S25. Optimized geometries of the reactants and products in the elementary steps 13 and 14, where ethanolamine reacts in the position 11. Results of the IRC calculations for the corresponding transition states.

Figure S26. Optimized geometries of the reactants and products in the elementary steps 13 and 14, where ethanolamine reacts in the position 12. Results of the IRC calculations for the corresponding transition states.

Figure S27. Optimized geometries of the reactants and products in the elementary steps 13 and 14, where *n*-hexylamine reacts in the position 11. Results of the IRC calculations for the corresponding transition states.

Figure S28. Optimized geometries of the reactants and products in the elementary steps 13 and 14, where *n*-hexylamine reacts in the position 13. Results of the IRC calculations for the corresponding transition states.