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Apesar dos avanços no desenvolvimento de antifúngicos, tem ocorrido um aumento de casos 
de criptococose que não respondem de forma adequada a fluconazol (fármaco de primeira escolha). 
Portanto, é de suma importância investigar as propriedades químicas de derivados azólicos que 
sejam ativos contra cepas de Cryptococcus neoformans resistentes a fluconazol. Visando alcançar 
esse objetivo, o perfil de suscetibilidade de um isolado clínico de C. neoformans resistente contra 
33 derivados azólicos comerciais foi avaliado junto com as suas respectivas concentrações inibitórias 
mínimas (MIC). Esses dados foram utilizados para construir modelos SIMCA (modelagem 
independente flexível por analogias de classes) que destacam a importância de propriedades 
eletrônicas (JGI10) para separar as moléculas ativas das inativas e para construir modelos de 
holograma-QSAR que apresentam bom ajuste, mas capacidade preditiva baixa (HQSAR, r2 = 0.85, 
q2 = 0.35 e r2

pred = 0.38). Por outro lado, modelos de QSAR 2D desenvolvidos a partir de descritores 
topológicos apresentaramm boa qualidade estatística (r2 = 0.95, q2 = 0.86, r2

pred = 0.72) e destacam 
que a distribuição de cargas (GGI1) e a eletronegatividade topológica (GATS1e e MATS2e) devem 
ser modulados para contornar a resistência de C. neoformans.

Despite advances in the development of antifungal drugs, there has been an upsurge of 
cryptococosis infections that poorly respond to fluconazole (first choice drug). Hence, it is 
paramount to investigate the chemical properties of azole derivatives that are active against 
resistant C. neoformans. In order to achieve this goal, the susceptibility profile of a clinical 
isolate of resistant C. neoformans against 33 commercial azole derivatives was evaluated along 
with their potency (minimum inhibitory concentration, MIC). These data were employed to build 
SIMCA (soft independent modeling of class analogies) models that pinpoint the importance of 
electronic features (JGI10) to separate active from inactive compounds and hologram-QSAR 
models that have good fit but insufficient predictive power (HQSAR, r2 = 0.85, q2 = 0.35 and 
r2

pred = 0.38). Conversely, 2D QSAR models built from topological descriptors improved the 
statistical quality (r2 = 0.95, q2 = 0.86, r2

pred = 0.72) and highlight that charge distribution (GGI1) and 
topological electronegativity (GATS1e and MATS2e) should be modulated to overcome the  
C. neoformans resistance.
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Introduction

F u n g a l  m e n i n g i t i s ,  c a u s e d  e i t h e r  b y 
Cryptococcus neoformans or Cryptococcus gattii,1 
distresses approximately 1 million people each year and 
causes more than 600 thousand deaths.2 The first one is 
worldwide relevant, especially for HIV positive patients, 
while the second also can affect immunocompetent 

persons in tropical and subtropical regions.3 Currently, 
azole derivatives are considered as the first choice drug for 
long-term therapy.4 However, the emergence of fluconazole-
resistant C. neoformans isolates, along with the fact that  
C. gattii infections respond poorly to azole treatment,5,6 
poses a tremendous hurdle to this approach.7,8 Taking this 
scenario into consideration, many research groups have 
focused their efforts towards the development of novel 
antifungal drugs that could circumvent resistance issues.9 
Most antifungal drug design campaigns have relied on 
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old-fashioned trial and error paradigm, according to which 
lead compounds have their structures modified, guided 
by synthetic feasibility and intermediate biological assay 
results, until the desired potency/selectivity is achieved. 
Modern structure-based drug design strategies have been 
hampered by the lack of structural data on fungal lanosterol 
14a demethylase, the azole therapeutical target, despite the 
fact that homology modeling has been employed to partially 
solve this limitation.10-13

An alternative strategy would be to explore ligand-based 
strategies to extract information from the large amount of 
data available from phenotypic assays. This approach allows 
the screening of hundreds of compounds at low costs, within 
a reasonable amount of time, and takes into consideration 
pharmacokinetic issues, such as drug permeability 
through the cell membrane, that are not accounted for 
in target-based assays.14 This sort of biological data has 
already been used, for instance, to build descriptor-based 
classificatory models (k-nearest neighbor (KNN) and soft 
independent modeling of class analogy (SIMCA)) that hint 
at the importance of electronegativity and dipolar moment 
towards the biological activity of azole derivatives against 
Moniliophthora perniciosa, the causal agent of Witches 
Broom disease.15 Although all azole antifungals target the 
same macromolecule, subtle differences in the binding 
site might alter the structural requirements for potency. In 
fact, mutations in the binding site of C. gattii lanosterol 
14-a demethylase have been associated with different 
susceptibility profile towards antifungal drugs.16-18 Thus, 
our group decided to investigate the structure-activity 
relationships of commercial azole against a fluconazole 
resistant C. gattii clinical isolate by means of 2D 
chemometric approaches.15,19 So, in order to accomplish 
the goal, the biological activities of 33 azole derivatives 
were measured under standardized conditions and used to 
build robust and predictive classificatory and quantitative 
2D chemometric models that underscore crucial chemical 
features for antifungal activity towards a fluconazole 
resistant C. gattii strain.

Experimental

Reagents

The 33 imidazole and triazole derivatives employed 
in this study were purchased from the Sigma-Aldrich 
Fisher Company (St. Louis, MO, EUA) with purity 
equal or superior to 95% (Table S1 in the Supplementary 
Information (SI) section). All other reagents used in the 
culture medium preparation, buffer solutions and so on 
were acquired from well-known chemical companies 

(example Sigma-Aldrich and Merck chemical (Darmstadt, 
Germany)) and used without further purification.

Disc diffusion susceptibility assay

The activity profile of 33 azole derivatives against 
a fluconazole resistant C. gattii strain (available in the 
Microbiology Research laboratory (LPMC) from Pharmacy 
School of Federal University of Bahia) was evaluated by disk 
diffusion susceptibility assay.20

Considering the lack of standards concerning 
Cryptococcus spp assays, all compounds were initially 
evaluated at the standard concentrations employed for 
an American Type Culture Collection Candida albicans 
(ATCC 90028): 8.2 mmol L-1 (25 μg disc-1) as suggested 
by M-44A2 guideline.20 Twice the standard concentration 
(16.4 mmol L-1) and half of it (4.1 mmol L-1) were also 
evaluated to probe the susceptibility range profile (Table 1).

Table 1. Biological properties used for chemometric model development

Name
Diameter of inhibition halo / mm

MIC / 
(μmol L-1)

16.4 
mmol L-1

8.2 
mmol L-1

4.1
 mmol L-1

Azaconazole 23.3 0.0 0.0 106.62
Bifonazole 14.3 12.3 11.3 > 206.19
Bromuconazole 47.3 43.3 31.3 21.22
Ketoconazole 59.0 44.0 37.3 0.47
Climbazole 57.7 46.7 41.0 6.83
Clotrimazole 35.0 33.3 32.3 23.20
Cyproconazole 60.7 57.7 57.0 3.43
Diclobutrazole 29.3 24.7 14.0 24.37
Difenoconazole 36.0 33.3 31.7 2.46
Diniconazole 38.7 36.7 34.3 6.13
Econazole 30.3 28.0 27.0 10.48
Epoxiconazole 34.7 35.0 34.3 3.03
Etaconazole 38.0 31.0 23.3 24.38
Fembuconazole 28.0 29.0 26.0 23.75
Fluconazole 0.0 0.0 0.0 104.48
Fluotrimazole 0.0 0.0 0.0 168.70
Fluquinconazole 38.3 37.0 35.0 42.53
Flusilazole 26.0 26.3 19.7 25.37
Flutriafole 0.0 0.0 0.00 > 212.42
Hexaconazole 63.7 54.0 55.3 6.37
Imazalil 29.7 21.7 12.0 53.84
Itraconazole 22.3 21.0 19.3 0.18
Metconazole 54.3 51.7 44.0 3.13
Miconazole 39.3 33.3 26.7 2.40
Myclobutanil 25.7 13.3 0.0 55.41
Penconazole 38.7 33.0 22.0 14.08
Prochloraz 17.0 0.0 0.0 84.96
Propriconazole 36.0 35.7 35.7 11.69
Prothioconazole 42.7 42.3 40.3 92.95
Sulconazole 39.0 38.0 37.7 0.63
Tebuconazole 39.3 33.3 26.7 12.99
Triadimenol 18.0 11.0 0.00 10.11
Triticonazole 26.7 26.0 19.3 12.59
Average 33.0 28.3 24.1
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All assays were carried out in triplicate, along with 
positive growth, negative growth and dimethyl sulfoxide 
(DMSO) controls. Process control (manipulation) was 
probed by simultaneous evaluation of Candida albicans 
(ATCC 90028) and Candida parapsilosis (ATCC 22019) 
susceptibility profile against standard fluconazole 
concentration (8.2 mmol L-1).

Minimum inhibitory concentration assays

The broth microdilution procedure was employed to 
determine the minimum inhibitory concentrations (MIC).21 
Briefly, the azole derivatives were solubilized in DMSO, 
except for fluconazole that was solubilized in Roswell Park 
Memorial Institute medium (RPMI) 1640, to produce stock 
solutions (1600-5120 mg mL-1 for fluconazole) that were 
serial diluted and dispensed into microdiluition plates. 
The final solutions (ranging from 128 to 0.062 mg mL-1) 
were inoculated with a McFarland 0.5 standard saline 
suspension, containing C. gattii strain, diluted into 
saline:RPMI solution (1:100).

All MICs were defined as the lowest concentration of azole 
that produces more than 50% inhibition growth (Table 1).  
Every measurement was carried out in quadruplicate and 
positive control (fluconazole MIC against standard strains 
Candida parapsilosis (ATCC 22019) and Candida krusei 
(ATCC 6258)), sterility control (only RPMI) and DMSO 
control (20 μL of DMSO, 80 μL of RPMI and 100 μL of 
fungal suspension) were also carried out.21

Chemometric analysis

Data set
The data set used for the chemometric studies 

comprises 33 azole derivatives, whose biological 

activity against Cryptococcus gattii was measured as 
described previously. The chemical structures were 
sketched in Sybyl-X 1.1 platform (Tripos Inc., St. Louis, 
USA) and energy optimized with Tripos molecular 
force-field (gradient < 0.01), using Gasteiger-Huckel 
charges and a dielectric constant equal to 80. Next, 
PM3 semi-empiric method (keywords: 1SCF XYZ ESP 
NOINTER SCALE=1.4 NSURF=2 SCINCR=0.4 NOMM) 
was used to assign partial charges to all molecules, as 
available in Sybyl-X 1.1 Mopac module.

Two biological properties were evaluated in this study: 
susceptibility assay distinguishes active from inactive 
azoles against fluconazole resistant C. gattii, whereas MIC 
values probe the potency profile. Hence, these values were 
separately used to build classification/pattern recognition 
models and multiple linear/partial least squares regression 
models. Thus, the diameter of inhibition halo, measured at 
4.1 mmol L-1 (Table 1), was used to split the compounds 
into active (inhibition halo larger than 25 mmm) or inactive 
(Figure 1 and Table 2) compounds. MIC values, expressed 
in molar concentration (Table 1), were transformed to 
pMIC (–log [MIC]) and used as dependent variables in 

Table 2. Division of the compounds into training and test sets

Active compound Inactive compound

Training set Test set Training set Test set

Bromuconazole Difenoconazole Azaconazole Fluconazole

Ketoconazole Fembuconazole Bifonazole Flusilazole
Climbazole Hexaconazole Diclobutrazole Myclobutanil

Clotrimazole Metconazole Etaconazole Triticonazole
Cyproconazole Propriconazole Fluotrimazole
Diniconazole Flutriafol

Econazole Imazalil
Epoxiconazole Itraconazole

Fluquinconazole Penconazole
Miconazole Prochloraz

Prothioconazole Triadimenol
Sulconazole

Tebuconazole

Figure 1. Frequency histogram of the compounds at the lower 
concentration (4.1 mmol L-1) in relation to range in the diameter of 
inhibition halo against C. gattii.
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QSAR model development (Figure S1 in the SI section and 
Table 4).

Descriptor calculation and selection
2D descriptors available in DRAGON 5.5 (Talette SRL, 

Milan, Italy) were calculated for the whole dataset. Next, 
descriptors with high pairwise-correlation (≥ 97%) and 
low variance (< 10%) were excluded. The remaining 
descriptors were subjected to different selection protocols, 
as described below:

(i) Classification/pattern recognition models: Fisher’s 
weight15,22 was employed to identify descriptors that 
individually differentiate the two classes of compounds. 
Descriptors with values above the mean plus two times the 
standard deviation (95% confidence interval) were selected 
for further chemometric analysis (KNN and SIMCA) 
available in the Pirouette 4.0 software (Infometrix Inc., 
Washington, USA).

(ii) MOBYDIGS 1.0 software (Talette SRL, Milan, Italy) 
was employed to build preliminary multiple-linear regression 
QSAR (MLR-QSAR) models, with up to 4 descriptors per 
model through genetic algorithm.23 MLR-QSAR model 
optimization was guided by the following rules: QUIK rule 
(0.05), asymptotic Q2 rule (-0.005), redundancy RP rule 
(0.1) and overfitting RN rule (0.01).24,25 Due to the stochastic 
nature of genetic algorithm, the search was carried out in ten 
independent populations of 2000 models. Each population 
evolved for at least 1500 generations. Finally, the descriptors 
found in models with q2 > 0.64 were polled together, 
autoscaled and employed for further chemometric analysis 
(hierarchical cluster analysis (HCA), principal component 
analysis (PCA) and partial least square regression (PLS)) 
available in the Pirouette 4.0 software.

KNN and SIMCA studies
KNN models were built considering the Euclidean 

distance between the unknown sample (yet to be 
classified) and the k-th nearest neighbors, whose class is 
previously known.26,27 Too small or too large, a number 
of neighbors causes either instability or loss of precision 
to the model, so the optimum number of neighbors was 
determined by leave-one-out cross validation (LOOcv).

LOOcv approach was also employed to evaluate the 
number of PCs that should be used to describe each class 
in SIMCA models. The model improvement was carried 
out by the iterative elimination of descriptors with low 
discriminant or modeling power.

Hologram QSAR studies
Statistical HQSAR modeling was carried out as 

previously described.19,28-30 Briefly, all molecules were 

broken down into unique fragments (linear, branched, 
cyclic, overlapping and so forth) according to different 
fragment distinction features (atoms (A), bonds (B), 
connections (C), hydrogen atoms (H), chirality (Ch) and 
donor/acceptor (DA). Initially, only fragments with 4-7 
atoms were considered. These fragments were hashed to a 
length-fixed array of 53, 59, 61, 71, 83, 97, 151, 199, 257, 
307, 353 or 401 bins, which controls the hologram length 
(HL). The molecular holograms created by the previous 
steps were employed along with the biological activity 
data (pMIC) to develop PLS HQSAR models. For the best 
HQSAR model obtained until this point, the influence of 
fragment size (3-6, 5-8) was also investigated.

Model evaluation and validation

As two biological properties were employed during 
chemometric model development, dissimilar criteria 
were necessary to evaluate their fit and predictive power. 
Nevertheless, in both cases, the complete data set was 
randomly split into training and test set compounds for 
external validation purposes (see Table 2 for KNN and 
SIMCA and Table 4 for descriptor-based and fragment-
based QSAR models). Classification and pattern recognition 
models were evaluated according to the percentage of 
correctly classified training set compounds, whereas the 
equivalent measure for test set compounds was employed 
to account for the predictive ability of such models. 

On the other hand, fragment-based (HQSAR) and 
descriptor-based (QSAR) models were evaluated by LOO 
cross-validation (q2) and had their external predictive 
power (r2

pred) calculated using the approach described in 
the lieterature.31,32

Table 3. Descriptor selected through Fisher’s weight

Descriptora Meaning

BEHe3 highest eigenvalue No. 3 of Burden 
matrix / weighted by atomic Sanderson 

electronegativities

BEHm2 highest eigenvalue No. 2 of Burden matrix / 
weighted by atomic masses

BEHm3 highest eigenvalue No. 3 of Burden matrix / 
weighted by atomic masses

C-008 atom-centered fragments - CHR2Xb

EEig05d Eigenvalue 05 from edge adj. matrix weighted 
by dipole moments

JGI10 mean topological charge index of order10

MATS8p moran autocorrelation - lag 8 / weighted by 
atomic polarizabilities

nCl number of chlorine atoms
nCs number of total secondary C (sp3)

PJI2 2D Petitjean shape index
aDescriptors found in final SIMCA model are highlighted in gray. bR stands 
for carbon; X stands for heteroatom (example, O, N, S).
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Results and Discussion

Although the classical SAR of azole antifungal 
derivatives has long been known,33 evolution and 
mutation have produced subtle but crucial modifications 
in the active site of their molecular target, which results 
in lower susceptibility profile and appearance of resistant 
strains.5,8,18,34-36 It is noteworthy that although modern 
drug design methodologies have been successfully 
applied to fight Candida spp. azole-resistance and guide 
the development of antifungal compounds,19,37,38 similar 
strategies have been scarcely employed in the development 
of drugs against Cryptococcus spp.

One approach to circumvent this dilemma is to 
evaluate the structural and physicochemical features 
of azole derivatives that are currently available to fight 
Cryptococcus spp resistant strains, such as the fluconazole 
resistant clinical isolate of C. gattii employed in this 
work. This new stand point of view over azole antifungals 
must be considered in two steps. First, it is essential to 
underscore which properties should be considered to 
properly select an azole derivative that is active against 
a fluconazole-resistant C. gattii infection. Secondly, 
it is important to highlight which features account for 
the different biological profile observed among azole 
derivatives against C. gattii since this information might 
shed some light on the chemical requirements to overcome 
fungal resistance. Most of the time, pharmacists and 
physicians measure fungal susceptibility profile by 
diffusion disc assay, so this technique was used to classify 
a dataset of 33 commercial azole antifungals as active or 
inactive against C. gattii.

Due to the lack of standardized microbiologic 
protocols to assay most azole derivatives included in this 
study, adaptations to M44-A2 protocol were required.20 
Preliminary assays were carried out with discs containing 
8.2 mmol L-1 of each compound, a concentration equivalent 
to that proposed for evaluating the susceptibility of 
Candida albicans (ATCC 90028) against fluconazole. 
Next, twice (16.4 mmol L-1) and half (4.1 mmol L-1) of the 
standard concentration were probed (Table 1). Although 
diffusion disk protocols do not allow us to evaluate the 
compound potency, the results clearly highlight that 
some azole derivatives are ineffective against C. gattii 
in all concentrations assessed (example, fluconazole, 
fluotrimazole and flutriafol). On the other hand, many 
compounds have inhibition halos greater than the average 
(example, ketoconazole, cyproconazole, difenoconazole, 
diniconazole, hexaconazole and so forth). Considering the 
average inhibition halo as criteria (Table 1), it is possible 
to split the azole derivatives into either inactive or active 
against C. gattii. Regardless the disc concentration, the 
compound classification remains the same for all but 3 
compounds (highlighted in Table 1), so it was decided to 
use the results from the lower concentration disc to classify 
18 compounds as active (54.5%) and 15 as inactive (45.5%) 
against C. gattii (Table 2).

In order to evaluate if the chemical information provided 
by this study would be restricted to the compounds 
analyzed or could be generalized to congeneric azole 
derivatives, not used for model calibration, the initial 
dataset was randomly split into training set (13 active and 
11 inactive compounds) and test set (5 active and 4 inactive 
compounds) (Table 2).

Table 4. pMIC values of 33 azoles derivatives (training and test sets) against C. gattii

Training set Test set

Compound pMIC Compound pMIC Compound pMIC

Azaconazole 3.97 Hexaconazole 5.20 Ketoconazole 6.33

Bifonazole 3.69 Imazalil 4.27 Climbazole 5.17

Bromuconazole 4.67 Itraconazole 6.75 Cyproconazole 5.47

Clotrimazole 4.64 Metconazole 5.50 Diclobutrazole 4.61

Difenoconazole 5.61 Miconazole 5.62 Econazole 4.98

Diniconazole 5.21 Penconazole 4.85 Fluconazole 3.98

Epoxiconazole 5.52 Prochloraz 4.07 Fluotrimazole 3.77

Etaconazole 4.61 Propriconazole 4.93 Myclobutanil 4.26

Fembuconazole 4.62 Sulconazole 6.20 Prothioconazole 4.03

Fluquiconazole 4.37 Tebuconazole 4.89

Flusilazole 4.60 Triadimenol 5.00

Flutriafol 3.67 Triticonazole 4.90
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Although DRAGON 5.1 software provides more than 
2400 topological descriptors upon which chemometric 
tools could be applied, a limited number of those indeed 
is related to the biological activity of azole derivatives 
against C. gattii. In order to select those descriptors 
that have any correlation to fungal susceptibility assay, 
Fisher’s weight was employed to select descriptors that 
individually differentiate active from inactive compounds. 
The 10 descriptors (Table 3) selected by this strategy were 
gathered, autoscaled and used for KNN and SIMCA model 
developments.

KNN approach ascribes to all descriptors similar 
importance to compound classification and is highly 
influenced by the number of neighbors. In order to avoid 
model instability as well the loss of precision caused by 
either smaller or greater than optimal number of neighbors, 
LOOcv was used to select the number of neighbors that 
best fit the data. Accordingly, the KNN model built with 
10 neighbors correctly classified 69% of active and 73% 
of inactive training set compounds. Similar accuracy 
degree was observed for the test set compounds (60% 
of the active and 75% of inactive compounds correctly 
classified). In order to improve the quality of the statistical 
model and avoid problems associated with highly correlated 
descriptors (example, BEHm3 vs. MATS8p (r = 0.72) or 
BEHm3 vs. BEHe3 (r = 0.79)), it was resorted to 
chemometric approaches that rely on PCs, such as SIMCA. 
This approach not only reduces the dimensionality of the 
models and avoids correlation issues,39-41 but also allows a 
compound to be classified as “unknown” in case it lies in 
a chemical space outside the applicability domain of the 
model.42,43 In addition, SIMCA models can be optimized 
by the iterative exclusion of descriptors that have minor 
contribution to class separation (discriminating power) 
or that display little influence on the model (modeling 
power).44 Despite the fact that the initial model presents 
good statistical results (83% of active and 81.3% of 
inactive compounds correctly classified with 4 PCs), the 
exclusion of 3 descriptors lead to a less complex SIMCA 
model, which correctly classifies 85% to active and 100% 
of inactive training set compounds, using 3 PCs for each 
classes. Although, a somewhat lower classification power 
was observed for the test set compounds of best model 
(60% of the active and 75% of inactive compounds correctly 
predicted), this result is still better than the initial model 
(33% of active and 45% of inactive compounds) (Figure 2).

A model is as good as the data it is built from, so it 
is not surprising that the disc diffusion assays provided 
models with limited classification/predictive power. In fact, 
it has been already pointed out that biological results from 
microdilution in broth assays are more reliable than disc 

diffusion assays.45-47 The limitation of disc diffusion assays 
can be partially a consequence of compound diffusion rate 
in agar. In fact, a potent compound with low diffusion rate 
would produce a small inhibition halo and thus would be 
considered “inactive”. This subject deserves some thought 
if triticonazole is taken into consideration. According to 
disc diffusion assay, this compound is inactive (19.3 mm 
inhibition halo), but microdilution in broth assay reveals 
that its MIC (12.59 mmol L-1) is comparable to the most 
potent compounds. Interestingly, the best SIMCA model 
“erroneously” classifies this compound as active.

Despite moderate predictive capability, the best SIMCA 
model can shed some light on the structure-activity 
relationship of azole derivatives that are active against 
fluconazole-resistant C. gattii. A similar strategy was 
successfully employed by Mota et al.15 which uncovered 
the importance of electronegativity (BEHe3) and dipolar 
moment (JGI4), as well as H-bonding towards the 
activity of azole derivatives against M. perniciosa. As 
expected, evolutionary pressure, both natural and caused 
by antifungal-therapy, leads C. gattii to have a different 
susceptibility profile from that observed for M. perniciosa. 
Accordingly, azole derivative SAR must also have been 
altered. In order to investigate this matter, the descriptors 
with highest modeling power (BEHe3) and discriminant 
power (JGI10) (Figure S2) were further analyzed, as 
described below.

JGI10 is an average index of topological charge which 
evaluates the charge transference between pairs of atoms 
that are 10 bonds apart.48,49 Most of the inactive molecules 
have zero value for this descriptor (73%), whereas 50% of 
the active molecules have greater than zero values. This 
result suggests that charge dispersion has a large effect 
towards the antifungal activity.

Figure 2. Interclass distance for active and inactive compounds of the 
training and test sets according to final SIMCA model.
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The descriptor BEHe3 is a Burden eigenvalue descriptor 
that accounts for the Sanderson atomic electronegativity 
of atoms separated by 3 bonds.50,51 The analysis of BEHe3 
values suggests that extreme values are found only in 
inactive compounds (Figure S3 in the SI section).

This analysis is in good agreement with the information 
provided by JGI10, once both descriptors highlight that 
electronic features are essential to the biological property.

Similarly, Mota et al.15 showed that these types of 
descriptor (JGI4 and BEHe3) are useful for describing the 
activity profile of azole derivatives against the filamentous 
fungus Moniliophthora perniciosa.

Although promising, the classification models 
developed so far are not suited to predict the potency of 
azole derivatives and, therefore, have limited usefulness in 
the design of novel azole derivatives that would be more 
active against fluconazole-resistant C. gattii strains. In 
order to overcome this limitation, MIC values, obtained 
from microdilution in broth assay, were used to build 
QSAR models.

The pMIC values of training and test set compounds 
not only are normally distributed across the potency 
range (Table 4 and Figure S3 in the SI section) and were 
obtained under standardized conditions, but also account 
for pharmacokinetic effects that would not be captured in 
kinetic assays with the purified macromolecular target.

Hologram QSAR modeling

HQSAR technique was used as a first resource because 
it is not biased by subjective alignment rules required by 
3D QSAR approaches, such as CoMFA and CoMSIA, but 
shows comparable statistical quality to those methods.29,50 

Our hypothesis was that fragment-like descriptors 
(molecular holograms) would be useful to build robust 
2D QSAR models. Initially, the influence of fragment 
distinction over the statistical parameters was assessed 
using default fragment size (FS) (Table 5). If only atoms, 
bonds and connections (A/B/C) parameters are taken into 
consideration, marginal fit (r2 = 0.55) and poor internal 
consistency (q2 = 0.11) are achieved. Despite the fact that 
addition of hydrogen (H), chirality (Ch) and donor and 
acceptor (DA) improves the model fit, no significant 
increase was observed in the internal consistency (compare 
model 2, 3 and 4 vs. model 1). Similarly, other combinations 
of fragment distinction parameters produced no further 
statistical improvements in q2 values.

Sometimes, variation of fragment size leads to models 
with higher statistical values, but in this case, no further 
improvement was achieved for the q2 values (Table 6).

These initial results indicate that biological activity of 
azole derivatives cannot be properly captured by molecular 
holograms only. This might be a consequence of the fact 
that HQSAR models do not consider charge properties 
per se (not accounted for in fragment distinction options), 
whereas the best SIMCA model suggests that electronic 
features are highly influential for the antifungal activity. 
Aiming at circumvent this problem, topological descriptors 
weighted by steric or electrostatic features were employed 
to build 2D QSAR models.

Classical 2D QSAR

As an initial approach, MLR was used to build models 
with up to 4 variables, from a set of topological descriptors 
calculated with DRAGON software. Despite good 

Table 5. Influence of fragment distinction over the statistical parameters of HQSAR models, using default fragment size (4-7)

Model Fragment distinction q2 r2 Hologram length N

1 ABC 0.11 0.55 61 2

2 ABCH 0.25 0.46 61 2

3 ABCHCh 0.25 0.88 307 4

4 ABCHChDA 0.28 0.81 59 4

5 ABH 0.20 0.41 71 2

6 ACH 0.23 0.45 59 2

7 ABCCh 0.21 0.60 61 2

8 ACHCh 0.23 0.48 61 2

9 AHCh 0.22 0.44 71 2

10 ABHCh 0.29 0.61 59 3

11 AHChDA 0.19 0.30 71 1

q2: cross-validated correlation coefficient; r2: noncross-validated correlation coefficient; N: optimal number of components. Fragment distinction: A, atoms; 
B, bonds; C, connections; H, hydrogen atoms; Ch, chirality; DA, donor and acceptor.



Freitas et al. 969Vol. 24, No. 6, 2013

statistical parameters were achieved (r2 = 0.78, q2 = 0.74), 
these models have poor predictive ability (r2

pred = 0.1). 
Among the reasons that might explain this result is: 
(i) collinearity among descriptors, which results in unstable 
regression models; (ii) inadequate description of chemical-
biological space by 2D descriptors. As pointed out before, 
no structural data are available for the macromolecular 
target of azole antifungals, rendering the development 
of 3D QSAR model subjective. On the other hand, the 
collinearity issue can be simply solved by using PLS.51 This 
statistical tool has the additional benefit of reducing the risk 
of building chance correlation QSAR models, once just a 
few descriptors (PCs) are employed to build the models, 
instead of the 428 descriptors available at first.

Accordingly, 36 descriptors found in the best 10 MLR 
models (q2 > 0.64) were gathered, autoscaled and used 
for further PLS analysis, as available in the Pirouette 4.0 
software. (Table S2 in the SI section).

The initial QSAR model shows statistical results 
(r2 = 0.88 and q2 = 0.69, 3PCs) similar to those of preliminary 
MLR models, with improved but still low predictive ability 
(r2

pred = 0.45). Aiming at producing statistically sound 
QSAR models, an iterative exclusion of descriptors with low 
leverage towards the regression vector was carried out. This 
strategy afforded a significant improvement of the statistical 
quality (r2 = 0.95, q2 = 0.86, 3 PCs) (Table 7).

It is important to note though that high q2 values do 
not guarantee that the QSAR model has any predictive 

Table 6. Influence of fragment size over the statistical parameters of the best HQSAR models

Model Fragment distinction q2 r2 Hologram length N Fragment size

12 ABHCh 0.14 0.47 59 2 2-5

13 ABHCh 0.35 0.85 59 4 3-6

14 ABHCh 0.15 0.59 59 3 5-8

q2: cross-validated correlation coefficient; r2: noncross-validated correlation coefficient; N: optimal number of components. Fragment distinction (FD): A, 
atoms; B, bonds; C, connections; H, hydrogen atoms; Ch, chirality; DA, donor and acceptor.

Table 7. Descriptors contained in the final 2D QSAR model

Variable Description

Me mean atomic Sanderson electronegativity (scaled on carbon atom)

Ms mean electrotopological state

nDB number of double bonds

MAXDN maximal electrotopological negative variation

PW3 path/walk 3 - Randic shape index

T(F..F) sum of topological distances between F..F

X2v valence connectivity index chi-2

X5v valence connectivity index chi-5

X2Av average valence connectivity index chi-2

IC3 information content index (neighborhood symmetry of 3-order)

ATS6p broto-Moreau autocorrelation of a topological structure - lag 6 / weighted by atomic polarizabilities

MATS7m Moran autocorrelation - lag 7 / weighted by atomic masses

MATS8m Moran autocorrelation - lag 8 / weighted by atomic masses

MATS2e Moran autocorrelation - lag 2 / weighted by atomic Sanderson electronegativities

GATS1m Geary autocorrelation - lag 1 / weighted by atomic masses

GATS1e Geary autocorrelation - lag 1 / weighted by atomic Sanderson electronegativities

GATS4p Geary autocorrelation - lag 4 / weighted by atomic polarizabilities

ESpm03u spectral moment 03 from edge adj. Matrix

BELe8 lowest eigenvalue No. 8 of burden matrix / weighted by atomic sanderson electronegativities

GGI1 Topological charge index of order 1

SEigZ eigenvalue sum from Z weighted distance matrix (Barysz matrix)

nArX number of halogen linked to aromatic ring

C-003 atom-centred fragments - CHR3a

C-040 atom-centred fragments - R–C(=X) –X / R–C#X / X=C=Xa,b

aR stands for any groups linked to the central carbon atom; b=: stands for double bond; # stands for the triple bond; X stands for heteroatom (i.e., O, N, S).
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ability.52 Thus, the predictive power was assessed by means 
of external validation protocol using test set compounds 
(Table 4). The good agreement between experimental and 
predicted values (residues below 0.65 log units) indicates 
the high robustness and reliability of descriptors used 
to build this QSAR model (Figure 3 and Table 8), thus 
suggesting that this model might be useful to understand the 
structural and physicochemical requirements for inhibition 
of fluconazole-resistant C. gattii growth and, in the future, 
guide the identification of novel azole derivatives that would 
be more active.

In order to achieve this goal, descriptors with high 
leverage towards the regression vectors were selected for 
further analysis (Figure 4).

It is interesting to note that most of the descriptors with 
high vector regression values describe electrostatic features 
(example, GGI1, ESPm03u, X2v, BELe8, ATS6p, X2Av, 
GATS4p, GATS1e and MATS2e), thus emphasizing the 
influence of electronic features to the antifungal activity.

GGI1, which is inversely correlated to global charge 
transfer in the molecule, suggests that reducing charge 
spread might improve the potency of azole derivatives.53,54 In 
fact, high GGI1 values are found in potent azole derivatives 
(difenoconazole (GGI1 = 7.0; MIC = 2.46 mmol L-1), 
ketoconazole (8.5; MIC = 0.47 mmol L-1) and itraconazole 
(10.5; MIC = 0.18 mmol L-1)) whereas weak derivatives 
follow the opposite trend (e.g., imazalil (GGI1 = 3.5; 
MIC = 53.84 mmol L-1) and bifonazole (GGI1 = 2.5; 
MIC = 206.19 mmol L-1).

GATS1e and MATS2e account for the difference on 
the atomic electronegativity at the topological distance of 
1 and 2 bonds, respectively. Although these descriptors 
point out to the same characteristic, at similar topological 
distance, they are mathematically uncorrelated (r = 0.05). 
The MATS descriptors provide global information whereas 
GATS descriptors are sensitive to differences in the atomic 
neighborhood (example, branching).55,56 Nevertheless, both 
descriptors show that low electronegativity difference 
between atoms one or two bonds apart increases potency. 
Taken together, the most influential descriptors underscore 
that modulating electronic features of azole derivatives is 
the most promising strategy to circumvent resistance issues 
in fluconazole-resistant C. gattii strains.

Conclusion

The chemometric models presented in this work 
take advantage of well-established ligand-based tools to 
highlight chemical features that should be modulated if 
Cryptococcus spp resistance to azole derivatives is to be 
overcome. First, physicochemical and structural changes 
that play a major role to azole derivatives antifungal 
activity were investigated by SIMCA models. This 
preliminary study suffers from the limitations imposed 
by disc diffusion assays. Nevertheless, it highlights 
that electronic features (accounted by BEH3 and 
JGI10) could be useful to explain azole derivative 
activity profile against fluconazole resistant C. gattii. 

Table 8. Experimental and predicted pMIC values of the test set 
compounds for 2D QSAR based on topological descriptors models

Name
Experimental 

pMIC

Descriptor-based QSAR

Predicted pMIC Residue

Climbazole 5.17 4.81 -0.35

Cyproconazole 5.47 5.87 0.40

Diclobutrazole 4.61 5.25 0.63

Econazole 4.98 5.62 0.64

Fluconazole 3.98 4.05 0.07

Fluotrimazole 3.77 3.91 0.14

Ketoconazole 6.33 6.11 -0.21

Myclobutanil 4.26 4.29 0.04

Prothioconazole 4.03 4.66 0.63

Figure 3. Plot of experimental and predicted pMIC values according to 
the classical 2D QSAR model.

Figure 4. Coefficient of vector regression for descriptors of final 
2D QSAR model based on topological descriptors.
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Furthermore, fragment-based QSAR (HQSAR) studies 
proved inappropriate to describe the structure-activity 
relationship of azole derivatives (r2 = 0.85, q2 = 0.35, 
r2

pred = 0.38), whereas topological descriptors weighted by 
electronic and steric properties proved suitable to develop 
high quality 2D QSAR models (r2 = 0.95, q2 = 0.86, 
r2

pred = 0.72). The analysis of the best QSAR model 
supports the hypothesis that electronic features, described 
by GGI1, MATS2 and GATS1, should be fine-tuned in 
order to develop congeneric molecules with improved 
potency against fluconazole-resistant C. gattii strains.

Supplementary Information

Supplementary material includes the complete set 
of descriptor employed for PLS model development 
(Figures S1-S3, Tables S1 and S2) and is available free of 
charge at http://jbcs.sbq.org.br as a PDF file.

Acknowledgments

We gratefully acknowledge financial support 
f rom the  Bah ia  S t a t e  Resea rch  Founda t ion 
(FAPESB-BOL0160/2009) and the Brazilian National 
Council for Scientific and Technological Development 
(CNPq 57.3767/2008-4).

References

 1.  Kidd, S. E.; Hagen, F.; Tscharke, R. L.; Huynh, M.; Bartlett, 

K. H.; Fyfe, M.; Macdougall, L.; Boekhout, T.; Kwon-Chung, 

K. J.; Meyer, W.; Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 

17258.

 2.  Park, B. J.; Wannemuehler, K. A.; Marston, B. J.; Govender, 

N.; Pappas, P. G.; Chiller, T. M.; AIDS 2009, 23, 525.

 3.  http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5928a1.htm  

accessed in April 2013.

 4.  Friese, G.; Discher, T.; Fussle, R.; Schmalreck, A.; Lohmeyer, J.;  

AIDS 2001, 15, 2344.

 5.  Khan, Z. U.; Randhawa, H. S.; Kowshik, T.; Chowdhary, A.; 

Chandy, R.; J. Antimicrob. Chemother. 2007, 60, 312.

 6.  Chong, H. S.; Dagg, R.; Malik, R.; Chen, S.; Carter, D.; J. Clin. 

Microbiol. 2010, 48, 4115.

 7.  Yamazumi, T.; Pfaller, M. A.; Messer, S. A.; Houston, A. K.; 

Boyken, L.; Hollis, R. J.; Furuta, I.; Jones, R. N.; J. Clin. 

Microbiol. 2003, 41, 267.

 8.  Varma, A.; Kwon-Chung, K. J.; Antimicrob. Agents Chemother. 

2010, 54, 2303.

 9.  Sheng, C.; Zhang, W.; Ji, H.; Zhang, M.; Song, Y.; Xu, H.; 

Zhu, J.; Miao, Z.; Jiang, Q.; Yao, J.; Zhou, Y.; Lu, J.; J. Med. 

Chem. 2006, 49, 2512.

 10.  Sheng, C. Q.; Miao, Z. Y.; Ji, H. T.; Yao, J. Z.; Wang, W. Y.; 

Che, X. Y.; Dong, G. Q.; Lu, J. G.; Guo, W.; Zhang, W. N. A.; 

Antimicrob. Agents Chemother. 2009, 53, 3487.

 11.  Sheng, C.; Che, X.; Wang, W.; Wang, S.; Cao, Y.; Yao, J.; 

Miao, Z.; Zhang, W.; Chem. Biol. Drug Des. 2011, 78, 309.

 12.  Wang, S.; Jin, G.; Wang, W.; Zhu, L.; Zhang, Y.; Dong, G.; 

Liu, Y.; Zhuang, C.; Miao, Z.; Yao, J.; Zhang, W.; Sheng, C.; 

Eur. J. Med. Chem. 2012, 53, 292.

 13.  Xu, Y.; Sheng, C.; Wang, W.; Che, X.; Cao, Y.; Dong, G.; 

Wang, S.; Ji, H.; Miao, Z.; Yao, J.; Zhang, W.; Bioorg. Med. 

Chem. Lett. 2010, 20, 2942.

 14.  Wang, J.; Urban, L.; Drug Discovery 2004, 73.

 15.  Mota, S. G. R.; Barros, T. F.; Castilho, M. S.; J. Braz. Chem. 

Soc. 2010, 21, 510.

 16.  Leroux, P.; Walker, A. S.; Pestic. Manag. Sci. 2011, 67, 44.

 17.  Diaz-Guerra, T. M.; Mellado, E.; Cuenca-Estrella, M.; 

Rodriguez-Tudela, J. L.; Antimicrob. Agents Chemother. 2003, 

47, 1120.

 18.  Morio, F.; Loge, C.; Besse, B.; Hennequin, C.; Le Pape, P.; 

Diagn. Microbiol. Infect. Dis. 2010, 66, 373.

 19.  Mota, S. G. R.; Barros, T. F.; Castilho, M. S.; J. Braz. Chem. 

Soc. 2009, 20, 451.

 20.  Clinical and Laboratory Standards Institute (CLSI); Method 

for Antifungal Disk Diffusion Susceptibility Testing of Yeasts; 

CLSI: USA, 2009, p. 29.

 21.  Clinical and Laboratory Standards Institute. Reference method 

for broth dilution antifungal susceptibility testing of yeasts. 

M27-A2, CLSI: USA, 2005, p. 22.

 22.  Cavalcanti, A. R. O.; Soares Leite, E.; Neto, B. B.; Ferreira, R.; 

Origins Life Evol. Biosphere 2004, 34, 407.

 23.  Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M.; Data 

Handling Sci. Tech. 2003, 23, 141.

 24. Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M.; Anal. Chim. 

Acta 2004, 515, 199.

 25. Todeschini, R.; Consonni, V.; Maiocchi, A.; Chemom. Intell. 

Lab. Syst. 1999, 46, 13.

 26.  Molfetta, F. A.; Bruni, A. T.; Honório, K. M.; da Silva, A. B. F.; 

Eur. J. Med. Chem. 2005, 40, 329.

 27.  De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D. L.; 

Chemom. Intell. Lab. Syst. 2000, 50, 1.

 28.  Castilho, M. S.; Guido, R. V.; Andricopulo, A. D.; Bioorg. Med. 

Chem. 2007, 15, 6242.

 29.  Castilho, M. S.; Postigo, M. P.; de Paula, C. B.; Montanari, 

C. A.; Oliva, G.; Andricopulo, A. D.; Bioorg. Med. Chem. 2006, 

14, 516.

 30.  Guido, R.; Castilho, M.; Mota, S.; Oliva, G.; Andricopulo, A.; 

QSAR Comb. Sci. 2008, 27, 768.

 31.  Schuurmann, G.; Ebert, R. U.; Chen, J.; Wang, B.; Kuhne, R.; 

J. Chem. Inf. Model. 2008, 48, 2140.

 32.  Doddareddy, M. R.; Cho, Y. S.; Koh, H. Y.; Pae, A. N.; Bioorg. 

Med. Chem. 2004, 12, 3977.



2D Chemometric Studies of a Series of Azole Derivatives Active against Fluconazole-Resistant Cryptococcus gattii J. Braz. Chem. Soc.972

 33.  Bell, A. S.; Comprehensive Medicinal Chemistry II; Elsevier 

Science: Oxford, UK, 2007.

 34.  Marichal, P.; Koymans, L.; Willemsens, S.; Bellens, D.; 

Verhasselt, P.; Luyten, W.; Borgers, M.; Ramaekers, F. C. S.; 

Odds, F. C.; Vanden Bossche, H.; Microbiol. 1999, 145, 2701.

 35.  Sanglard, D.; Ischer, F.; Koymans, L.; Bille, J.; Antimicrob. 

Agents Chemother. 1998, 42, 241.

 36.  Kontoyiannis, D. P.; Lewis, R. E.; Med. Micol. 2002, 359, 1135.

 37.  Duchowicz, P. R.; Vitale, M. G.; Castro, E. A.; Fernandez, M.; 

Caballero, J.; Bioorg. Med. Chem. 2007, 15, 2680.

 38.  Katritzky, A. R.; Slavov, S. H.; Dobchev, D. A.; Karelson, M.; 

Bioorg. Med. Chem. 2008, 16, 7055.

 39.  Jolliffe, I.; Principal Component Analysis, 2nd ed.; Springer: 

New York, USA, 2002.

 40.  Tan, C.; Qin, X.; Li, M.; Vib. Spectrosc. 2009, 51, 276.

 41.  Flåten, G. R.; Grung, B.; Kvalheim, O. M.; Chemom. Intell. 

Lab. Syst. 2004, 72, 101.

 42.  Wold, S.; Pattern Recognit. 1976, 8, 127.

 43.  Daszykowski, M.; Kaczmarek, K.; Stanimirova, I.; Heyden, 

Y. V.; Walczak, B.; Chemom. Intell. Lab. Syst. 2007, 87, 95.

 44.  Pirouette, Infometrix; Multivariate Data Analysis; Woodinville, 

USA, 2008.

 45.  Scorzoni, L.; Benaducci, T.; Almeida, A. M. F.; Silva, D. H. S.; 

Bolzani, V. S.; Mendes-Giannini, M. J. S.; J. Basic Applied Sci. 

2007, 28, 25.

 46.  Mendez, C. C.; Serrano, M. C.; Valverde, A.; Peman, J.; 

Almeida, C.; Martin-Mazuelos, E.; Med. Mycol. 2008, 46, 119.

 47.  Kiraz, N.; Dag, I.; Oz, Y.; Yamac, M.; Kiremitci, A.; 

Kasifoglu, N.; J. Microbiol. Methods 2010, 82, 136.

 48.  Lowis, D. R.; Tripos Technical Notes; St. Louis, USA, 1997

 49.  Weber, K. C.; da Silva, A. B. F.; Eur. J. Med. Chem. 2008, 43, 

364.

 50.  Burden, F. R.; Quant. Struct.-Act. Rel. 1997, 16, 309.

 51.  Gonzalez, M. P.; Teran, C.; Teijeira, M.; Besada, P.; 

Gonzalez-Moa, M.; J. Bioorg. Med. Chem. Lett. 2005, 15, 3491.

 52.  Golbraikh, A.; Tropsha, A.; J. Mol. Graphics Modell. 2002, 20, 

269.

 53.  Galvez, J.; Garcia, R.; Salabert, M. T.; Soler, R.; J. Chem. Inf. 

Comput. Sci. 1994, 34, 520.

 54.  Galvez, J.; Garcia-Domenech, R.; de Julian-Ortiz, J. V.; 

Soler, R.; J. Chem. Inf. Comp. Sci. 1995, 35, 272.

 55.  Geary, R. C.; The Incorporated Statistician 1954, 5, 115.

 56.  Moran, P. A.; Biometrika 1950, 37, 17.

Submitted: February 8, 2013

Published online: May 21, 2013


