5

Ultrasound-Assisted Synthesis of 1-*N*-β-D-Glucopyranosyl-1*H*-1,2,3-triazole Benzoheterocycles and their Anti-Inflammatory Activities

Gilson B. da Silva,^a Bruna M. Guimarães,^a Shalom P. O. Assis,^b Vera L. M. Lima^b and Ronaldo N. de Oliveira^{*,a}

^aDepartamento de Ciências Moleculares, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife-PE, Brazil

^bDepartamento de Bioquímica, Laboratório de Química e Metabolismo de Lipídeos e Lipoproteínas, Universidade Federal Rural de Pernambuco, 50670-901 Recife-PE, Brazil

Synthesis of 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl azide (1)

A 25 mL round flask was charged with D-glucose (5.0 g, 27.8 mmol), Ac₂O (25 mL) and 3.5 mol% I₂ (0.25 g, 1 mmol) in one portion. The reaction mixture was irradiated in the water bath of the ultrasonic cleaner at ambient temperature (30 °C) for 20 min. The resulting mixture was washed with 20% sodium thiosulfate $(Na_2S_2O_2)$ and extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layers were washed with saturated NaHCO₃ (30 mL). After drying over anhydrous sodium sulfate, the solvent was removed under vacuum. The peracetylated D-glucose was obtained as a colorless solid 95% (10.3 g) which was used without any purification. In the next step, HBr-AcOH (prepared by mixing 13 mL of 48% HBr with 24 mL of Ac₂O at 0 °C) was slowly added to a stirred solution of peracetylated D-glucose (5.0 g, 12.8 mmol) in 30 mL of CH₂Cl₂ at 0 °C. The reaction mixture was irradiated with ultrasound for 50 min at 25-30 °C. The crude material was washed successively with cold water and a cooled saturated aqueous solution of NaHCO₃. After drying the organic layers over Na₂SO₄, the solvent was removed under vacuum. The glucopyranosyl bromide was obtained as a colorless solid 70% (3.68 g) which was used in the next step without any purification. To a solution of the above bromide (2.0 g, 4.87 mmol) in acetone (20 mL), sodium azide (0.5 g, 7.69 mmol) and water (5 mL) were added. The reaction mixture was irradiated for 40 min at room temperature, and then extracted with CH_2Cl_2 (3 × 30 mL). After work-up, the solvent was removed and the crude mixture was crystallized from isopropanol to afford 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl azide (1) in 92% yield (1.68 g); mp 110-112 °C (lit. 125-126 °C);¹ [α]_D²⁶ -22 (*c*0.5, CH₂Cl₂) (lit. -29; *c* 2.0 in CHCl₃);¹ IR (KBr) v_{max}/cm⁻¹ 2118 (N₃), 1755 (C=O), 1372, 1240, 1058, 1038; ¹H NMR (300 MHz, CDCl₃) δ 5.21 (dd, 1H, *J* 9.0, 9.6 Hz, H-3), 5.09 (dd, 1H, *J* 9.9, 9.6 Hz, H-4), 4.95 (dd, 1H, *J* 9.0, 9.0 Hz, H-2), 4.64 (d, 1H, *J* 9.0 Hz, H-1), 4.27 (dd, 1H, *J* 4.8, 12.6 Hz, H-6'), 4.16 (dd, 1H, *J* 2.4, 12.6 Hz, H-6), 3.79 (ddd, 1H, *J* 2.4, 4.8, 9.9 Hz, H-5), 2.09, 2.07, 2.02, 2.00 (4 × CH₃CO); ¹³C NMR (75 MHz, CDCl₃) δ 170.6, 170.1, 169.3, 169.2, 87.9, 74.0, 72.6, 70.6, 67.8, 61.6, 20.7, 20.5.

Synthesis of propargylated *N*- and *S*-benzoheterocycles (2c-g)

1 mmol of K_2CO_3 and 1 mmol of the benzoheterocycle were suspended in anhydrous DMF (3 mL), and 1.5 equiv. propargyl bromide was added. The mixture was sonicated for a specific reaction time (10-60 min). Then, the mixture was extracted with 50% CH₂Cl₂/water (3 × 15 mL). The combined organic layers were dried over sodium sulfate anhydrous and concentrated under reduced pressure to afford the corresponding propargylated benzoheterocycles **2c-g**.

2-(2-Propyn-1-yl)-1*H*-isoindole-1,3-(2*H*)-dione (2c)

mp 141-143 °C (lit. 149 °C);² IR (KBr) ν_{max} /cm⁻¹ 3293, 2965, 2115, 1769, 1715, 1469, 1429; ¹H NMR (300 MHz, CDCl₃) δ 2.23 (t, 1H, *J* 2.4 Hz), 4.45 (d, 2H, *J* 2.4 Hz), 7.74 (m, 2H, phthalimide), 7.88 (m, 2H, phthalimide); ¹³C NMR (75 MHz, CDCl₃) δ 167.0, 134.2, 131.9, 123.6, 77.1, 71.5, 26.9.

1-(2-Propyn-1-yl)-1*H*-benzimidazole (**2d**)

Oil (lit. 38-40 °C);³ IR (KBr) ν_{max} /cm⁻¹ 3176, 3099, 2113, 1500, 1458, 1288, 752; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H, N=CH), 7.85 (dd, 1H, *J* 1.6, 6.4 Hz), 7.52 (dd, 1H,

^{*}e-mail: ronaldonoliveira@dcm.ufrpe.br

J 1.6, 6.4 Hz), 7.39-7.32 (m, 2H), 4.99 (d, 2H, J 2.8 Hz, CH₂-Het), 2.52 (t, 1H, J 2.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 142.5, 142.1, 134.5, 123.7, 123.1, 120.0, 109.9, 75.6, 75.2, 34.9.

2-(2-Propyn-1-ylthio)-benzothiazole (2e)

mp 40-42 °C (lit. 46 °C);⁴ IR (KBr) $v_{max}/cm^{-1} 3272, 2965, 2121, 1453, 1425, 1390, 1000, 765; ¹H NMR (300 MHz, CDCl₃) <math>\delta$ 7.91 (ddd, 1H, *J* 0.6, 1.5, 8.1 Hz), 7.76 (ddd, 1H, *J* 0.6, 1.5, 8.1 Hz), 7.44 (dd, 1H, *J* 1.5, 7.5 Hz), 7.32 (ddd, 1H, *J* 1.5, 7.5, 7.5 Hz), 2.30 (t, 1H, *J* 2.4), 4.14 (d, 2H, *J* 2.4 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 164.6 (C=N), 153.0 (C_{Ar}–N), 135.4 (C_{Ar}–NH), 126.1, 124.5, 121.8, 121.1, 78.3 (C=C), 72.3 (HC=), 21.5 (CH₂).

2-(2-Propyn-1-ylthio)-1H-benzimidazole (2f)

mp 128-130 °C (lit. 153 °C);⁵ IR (KBr) v_{max} /cm⁻¹ 3272, 2977, 2121, 1655, 1454, 1426, 1391; ¹H NMR (300 MHz, DMSO- d_{δ}) δ 8.06 (dd, 1H, J 1.5, 8.1 Hz), 7.90 (dd, 1H, J 0.6, 8.1 Hz), 7.50 (ddd, 1H, J 1.5, 7.8, 7.8 Hz), 7.39 (ddd, 1H, J 1.5, 8.1, 8.1, 8.1 Hz), 4.25 (d, 2H, J 2.4 Hz), 3.26 (t, 1H, J 2.4); ¹³C NMR (75 MHz, CDCl₃) δ 165.1 (C=N), 152.6 (C_{Ar}-N), 134.9 (C_{Ar}-NH), 126.5, 124.7, 122.0, 121.4, 79.4 (C=C), 74.7 (HC=), 21.1 (CH₂).

2-(2-Propyn-1-ylthio)-benzoxazole (2g)

mp 47-48 °C (lit. 51 °C);⁶ IR (KBr) $v_{max}/cm^{-1} 3264, 2970, 2125, 1504, 1452, 1235, 1132, 738; ¹H NMR (300 MHz, DMSO-$ *d_o*) δ 7.71-7.65 (m, 2H), 7.39-7.31 (m, 2H), 4.22 (d, 2H,*J*3.6 Hz), 3.32 (t, 1H,*J*3.0 Hz); ¹³C NMR (75 MHz, DMSO-*d_o*) δ 162.8 (C=N), 151.4 (C_{Ar}–O), 141.2 (C_{Ar}–N), 124.8, 124.6, 118.5 (β-C_{Ar}–N), 110.4 (β-C_{Ar}–N), 79.3 (C=C), 74.6 (HC=), 20.3 (CH₂).

Synthesis of N-glucosyl-1,2,3-triazoles (3a-g)

A solution of 10 mol% Et₃N (0.032 mmol, ca. 1 drop) and 10 mol% copper iodide (0.032 mmol) in CH₂Cl₂ (2 mL) were successively added to a mixture of the corresponding alkyne **2a-g** (0.32 mmol, 1.2 equiv.) and the azidosugar **1** (100 mg, 0.268 mmol, 1 equiv.) in CH₂Cl₂ (2 mL). The mixture was irradiated for 20-30 min at room temperature with ultrasound energy, under thin layer chromatographic (TLC) monitoring of the progress of the reaction. After dilution with cold water, the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 15 mL), followed by washing the organic layers were dried over anhydrous Na₂SO₄, filtered and the solvent evaporated under reduced pressure. The resulting mixture was chromatographed on silica gel using cyclohexane:EtOAc as eluent, which after

work-up furnished compounds **3a-g** as colourless solids. The final product was crystallized from methylene chloride/ cyclohexane.

1'-(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)-4'-phenyl-1H-1',2',3'-triazole (**3a**)

Solid; mp 189-193 °C; $[\alpha]_{D}^{26}$ –19 (*c*1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H, H_{triazole}), 7.83 (d, 2H, *J* 7.2 Hz, H_{arom}), 7.42 (dd, 2H, *J* 7.2, 8.0 Hz, H_{arom}), 7.34 (dd, 1H, *J* 7.2, 7.6 Hz, H_{arom}), 5.93 (d, 1H, *J* 9.2 Hz, H-1), 5.26-5.52 (3 × dd, 3H, *J* 9.2, 9.2, 9.6 Hz, H-2, H-3, H-4), 4.32 (dd, 1H, *J* 4.8, 12.8 Hz, H-6a), 4.16 (dd, 1H, *J* 2.0, 12.4 Hz, H-6b), 4.04 (ddd, 1H, *J* 2.0, 4.2, 10.0 Hz, H-5), 2.08 (s, 3H, CH₃CO), 2.07 (s, 3H, CH₃CO), 2.03 (s, 3H, CH₃CO), 1.87 (s, 3H, CH₃CO).

1'-(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)-4'-propyl-1H-1',2',3'-triazole (**3b**)

Yellow solid; mp 153-155 °C; $[\alpha]_{D}^{26}$ –33 (*c*1, CH₂Cl₂); IR (KBr) v_{max}/cm⁻¹ 3483, 3074, 2960, 2872, 1739, 1558, 1368, 1217, 1039, 928; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H, H_{triazole}), 5.83 (d, 1H, J 8.8 Hz, H-1), 5.43-5.35 (m, 2H, H-2, H-3), 5.21 (dd, 1H, J 9.2, 9.6 Hz, H-4), 4.26 (dd, 1H, J 4.8, 12.8 Hz, H-6a), 4.10 (br d, 1H, J 12.8 Hz, H-6b), 3.99 (ddd, 1H, J 1.6, 4.4, 10.0 Hz, H-5), 2.65 (t, 2H, J 7.6 Hz, CH₂-Het), 2.03 (s, 3H, CH₃CO), 2.02 (s, 3H, CH₃CO), 1.81 (s, 3H, CH₃CO), 1.98 (s, 3H, CH₃CO), 1.65 (m, 2H, CH₂), 0.91 (t, 3H, J 7.2 Hz, CH₂); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta$ 170.4, 169.8, 169.3, 168.8, 148.8 (C-4'), 118.8 (C-5'), 85.5 (C-1), 74.9, 72.4, 70.1, 67.7, 61.5, 27.4 (CH₂-Het), 22.3 (CH₂), 20.5, 20.4, 20.4, 20.0, 13.5 (5 × CH₃); anal. calcd. for $C_{19}H_{27}N_3O_9 \cdot (1/2 \times H_2O)$ C, 50.56; H, 6.28; found: C, 50.91; H, 6.57. HRMS $[(C_{10}H_{27}N_{3}O_{0}) + H]$ calcd.: 442.1826; found: 442.1759.

1'-(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)-4'-(methyl-1*H*-isoindole-1,3-(2*H*)-dione)-1*H*-1',2',3'-triazole (**3c**)

Solid; mp 131-134 °C; $[\alpha]_{D}^{26}$ -22 (*c*1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (m, 2H, phthalimide), 7.82 (s, 1H, H_{triazole}), 7.72-7.70 (m, 2H, phthalimide), 5.83 (d, 1H, *J* 8.8 Hz, H-1), 5.42-5.35 (m, 2H, H-2, H-3), 5.20 (dd, 1H, *J* 9.6, 10.0 Hz, H-4), 5.00 (2 × d, 2H, *J* 15.2 Hz, CH₂-Het), 4.27 (dd, 1H, *J* 4.8, 12.8 Hz, H-6a), 4.11 (dd, 1H, *J* 2.0, 12.8 Hz, H-6b), 3.96 (ddd, 1H, *J* 2.4, 4.8, 10.0 Hz, H-5), 2.07 (s, 3H, CH₃CO), 2.05 (s, 3H, CH₃CO), 2.01 (s, 3H, CH₃CO), 1.83 (s, 3H, CH₃CO).

1'-(2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranosyl)-4'-(*N*-methyl-1*H*-benzimidazol-1-yl)-1*H*-1',2',3'-triazole (**3d**)

Solid; mp 182-184 °C; $[\alpha]_D^{26}$ -21 (*c*1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H, H_{triazole}), 7.647.25 (m, 5H, H_{arom}), 5.81 (d, 1H, *J* 8.8 Hz, H-1), 5.48 (s, 2H, CH₂-Het), 5.40-5.29 (m, 2H, H-2, H-3), 5.17 (dd, 1H, (dd, 1H, *J* 9.6, 9.6 Hz, H-4), 4.25 (dd, 1H, *J* 4.6,12.6 Hz, H-6a), 4.09 (br d, 1H, *J* 12.6 Hz, H-6b), 3.96 (br dd, 1H, *J* 3.6, 10.0 Hz, H-5), 2.03 (s, 3H, CH₃CO), 2.02 (s, 3H, CH₃CO), 1.99 (s, 3H, CH₃CO), 1.78 (s, 3H, CH₃CO); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 169.8, 169.2, 168.8, 161.4 (C=N), 143.4 (C-4' and C_{Ar}-N), 123.4, 122.3, 120.8 (C-5' and C_{Ar}-N), 109.7 (C_{Ar}-N), 85.8 (C-1), 75.2, 72.3, 70.3, 67.5, 61.4, 20.6, 20.6, 20.5, 20.5, 20.4 (CH₂-Het and 4 × CH₃CO); anal. calcd. for C₂₄H₂₇N₅O₉: C, 54.44; H, 5.14; found: C, 54.71; H, 5.47.

1'-(2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranosyl)-4'-(benzothiazol-2-ylsulfanyl)methyl-1*H*-1',2',3'-triazole (**3e**)

Solid; mp 152-153 °C; $[\alpha]_{D}^{26}$ –18 (*c*1, CH₂Cl₂); IR (KBr) v_{max}/cm⁻¹ 3467, 3111, 3069, 2954, 1759, 1429, 1369, 945; ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.84 (m, 2H, H_{arom}, H_{triazole}), 7.70 (d, 1H, J 8.0 Hz, H_{arom}), 7.37 (dd, 1H, J7.6, 7.6 Hz, H_{arom}), 7.24 (dd, 1H, J7.6, 8.0 Hz, H_{arom}), 5.82 (d, 1H, J 8.8 Hz, H-1), 5.38 (m, 2H, H-2, H-3), 5.21 (dd, 1H, J 9.6, 9.6 Hz, H-4), 4.64 (2xd, 2H, J 14.4 Hz, CH₂-Het), 4.21 (dd, 1H, J 4.8, 12.4 Hz, H-6a), 4.07 (br d, 1H, 12.4 Hz, H-6b), 3.96 (ddd, 1H, J 2.0, 4.8, 10.0 Hz, H-5), 2.00 (s, 3H, CH₃CO), 1.97 (s, 3H, CH₃CO), 1.95 (s, 3H, CH₃CO), 1.69 (s, 3H, CH₃CO); ¹³C NMR (100 MHz, CDCl₃) & 170.2, 169.5, 169.1, 168.5, 165.3 (C=N), 152.8 (C_{Ar}-N), 144.4 (C-4'), 135.2 (C_{Ar}-S), 125.9 (C-5'), 124.2, 121.4, 121.3, 120.9, 85.4 (C-1), 74.8, 72.5, 69.9, 67.5, 61.3, 27.4 (CH₂-Het), 20.4, 20.3, 20.3, 19.8; anal. calcd. for C₂₄H₂₆N₄O₀S₂: C, 49.82; H, 5.19; found: C, 50.20; H, 4.88.

1'-(2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranosyl)-4'-(benzimidazol-2-ylsulfanyl)methyl-1*H*-1',2',3'-triazole (**3f**)

Brown solid; mp 156-158 °C; $[\alpha]_D^{26}$ –21 (*c*1, CH₂Cl₂); IR (KBr) ν_{max} /cm⁻¹ 3111, 3069, 2955, 2851, 1741, 1459, 1429, 1369, 1219, 1101, 1064, 946; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, 1H, *J* 8.0 Hz, H_{arom}), 7.85 (s, 1H, H_{triazole}), 7.74 (d, 1H, *J* 7.6 Hz, H_{arom}), 7.44-7.40 (dd, 1H, *J* 1.2, 8.0 Hz, H_{arom}), 7.32-7.28 (m, 1H, H_{arom}), 5.82 (d, 1H, *J* 8.8 Hz, H-1), 5.43-5.34 (m, 2H, H-2, H-3), 5.20 (dd, 1H, *J* 9.2, 9.6 Hz, H-4), 4.68 (2d, 2H, *J* 14.8 Hz, CH₂-Het), 4.25 (dd, 1H, J 4.8, 13.0 Hz, H-6a), 4.10 (dd, 1H, J 1.6, 13.0 Hz, H-6b), 3.97 (ddd, 1H, J 2.8, 5.0, 8.4 Hz, H-5), 2.04 (s, 3H, CH₃CO), 2.02 (s, 3H, CH₃CO), 2.00 (s, 3H, CH₃CO), 1.78 (br s, 1H, NH), 1.75 (s, 3H, CH₃CO); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 169.8, 169.3, 168.7, 165.4 (C=N), 152.9 (C_{Ar}-N), 144.7 (C-4'), 135.4 (C_{Ar}-NH), 126.03 (C-5'), 124.4, 121.6, 121.3, 121.0, 85.6, 75.0, 72.6, 70.0, 67.6, 61.4, 27.5 (CH₂-Het), 21.5, 20.4, 20.0, 19.8; anal. calcd. for C₂₄H₂₇N₅O₉S: C, 51.33; H, 4.85; found: C, 51.63; H, 4.95.

1'-(2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranosyl)-4'-(benzoxazol-2-ylsulfanyl)methyl-1*H*-1',2',3'-triazole (**3g**)

Solid; mp 161-162 °C; $[\alpha]_{D}^{26}$ -26 (c1, CH₂Cl₂); IR (KBr) v_{max}/cm⁻¹ 3087, 2966, 1748, 1500, 1456, 1374, 1222, 1133, 1044, 943; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H, H_{triazole}), 7.64 (d, 1H, J 7.6 Hz, H_{arom}), 7.40 (dd, 1H, J 0.8, 7.6 Hz, H_{arom}), 7.32-7.23 (m, 2H, H_{arom}), 5.83 (d, 1H, J 9.2 Hz, H-1), 5.55-5.35 (m, 2H, H-3, H-4), 5.21 (dd, 1H, J 9.2, 10.0 Hz, H-4), 4.67-4.57 (2xd, 2H, J 14.8 Hz, CH₂-Het), 4.25 (dd, 1H, J 4.8, 12.8 Hz, H-6a), 4.11 (dd, 1H, J 1.6, 12.8 Hz, H-6b), 3.97 (ddd, 1H, J 2.0, 4.8, 10.0 Hz, H-5), 2.05 (s, 3H, CH₂CO), 2.03 (s, 3H, CH₂CO), 2.00 (s, 3H, CH₃CO), 1.75 (s, 3H, CH₃CO); ¹³C NMR (100 MHz, CDCl₃) & 170.4, 169.9; 169.3, 168.7, 163.9 (C=N), 152.1 (C_{Ar}-O), 144.3 (C_{4'}), 141.8 (C_{Ar}-N), 124.3, 124.0, 121.3 (C-5'), 118.6, 1010 (C_{Ar}-O), 85.7 (C-1), 75.1, 72.6, 70.1, 67.6, 61.4, 26.6 (CH₂-Het), 20.6, 20.6, 20.5, 20.4; anal. calcd. for $C_{24}H_{26}N_4O_{10}S$: C, 51.24; H, 4.66; found: C, 51.04; H, 4.77.

References

- Esteves, A. P.; Rodrigues, L. M.; Silva, M. E.; Gupta, S.; Oliveira-Campos, A. M. F.; Machalicky, O.; Mendonça, A. J.; *Tetrahedron* 2005, *61*, 8625.
- 2. Asano, K.; Matsubara, S.; Heterocycles 2010, 80, 989.
- 3. Bognar, B.; Kalai, T.; Hideg, K.; Synthesis 2008, 15, 2439.
- 4. Ueno, Y.; Okawara, M.; J. Am. Chem. Soc. 1979, 101, 1893.
- 5. Sasaki, T.; Shimizu, I.; Heterocycles 1984, 22, 1225.
- Ray, S.; Ghosh, S.; Ganguly, N.; Synth. Commun. 2006, 36, 1447.

Figure S1. ¹H NMR (400 MHz) spectrum of 3b in CDCl₃.

Figure S2. ¹³C NMR (100 MHz) spectrum of **3b** in CDCl₃.

Figure S3. ¹H NMR (400 MHz) spectrum of 3e in CDCl₃.

Figure S4. ¹³C NMR (100 MHz) spectrum of 3e in CDCl₃.

Figure S5. ¹H NMR (400 MHz) spectrum of 3f in CDCl₃.

Figure S6. ¹³C NMR (100 MHz) spectrum of 3f in CDCl₃.

Figure S7. ¹H NMR (400 MHz) spectrum of 3g in CDCl₃.

Figure S8. ¹³C NMR (100 MHz) spectrum of 3g in CDCl₃.

Figure S9. H,H-COSY (400 MHz) spectrum of 3e in CDCl₃.

Figure S10. NOESY (400 MHz) spectrum of 3e in CDCl₃.

Figure S11. NOE DIFF (400 MHz) spectrum of 3b in CDCl₃ (H₅, irradiated).

Figure S12. NOE DIFF (400 MHz) spectrum of 3b in DMSO (H₅, irradiated).

Figure S13. NOE DIFF (400 MHz) spectrum of 3e in CDCl₃ (H₅, irradiated).

Figure S14. NOE DIFF (400 MHz) spectrum of 3e in DMSO (H₅, irradiated).

Figure S15. IR spectrum of 3b.

Figure S16. IR spectrum of 3e.

Figure S17. IR spectrum of 3f.

Figure S18. IR spectrum of 3g.