Biological and Structure-Activity Evaluation of Chalcone Derivatives against Bacteria and Fungi

Wender A. Silva,^{*,a} Carlos Kleber Z. Andrade,^{*,a} Hamilton B. Napolitano,^{a,b} Ivo Vencato,^{b,c} Carlito Lariucci,^c Miriam. R. C. de Castro^b and Ademir J. Camargo^b

^aLaQMOS, Instituto de Química, Universidade de Brasília, CP 4478, 70910-970 Brasília-DF, Brazil ^bCiências Exatas e Tecnológicas, Universidade Estadual de Goiás, BR 153, km 98, 75133-050 Anápolis-GO, Brazil

^cInstituto de Física, Universidade Federal de Goiás, CP 131, 74001-970 Goiânia-GO, Brazil

Table S1. Crystal and refinement data for compounds 3a, 3f, 3i, 3n, 3o, 3q and 3t

Compound	3 a	3f	3i	3n	30	3q	3t
Formula	$C_{16}H_{12}O_{3}$	$C_{16}H_{11}O_4Br$	$C_{15}H_{11}N_1O_3$	C ₁₅ H ₁₂ O ₂	$C_{15} H_{12} O_2$	C ₁₅ H ₁₁ NO ₃	C ₁₃ H ₁₀ O ₃
F(000)	1056	508	352	336	608	528	572
Crystal size / mm	$0.15 \times 0.15 \times 0.20$	$0.33 \times 0.23 \times 0.20$	$0.35 \times 0.25 \times 0.05$	$0.35 \times 0.30 \times 0.20$	$0.35 \times 0.25 \times 0.20$	$0.35 \times 0.13 \times 0.10$	$0.28 \times 0.25 \times 0.13$
Crystal habit/color	prism/yellow	prism/yellow	prism/yellow	prism/yellow	block/colorless	block/colorless	block/colorless
Crystal system	orthorhombic	monoclinic	triclinic	triclinic	monoclinic	monoclinic	monoclinic
Space group	Pcab	$P2_1/c$	P1	P-1	$P2_1/c$	$P2_1/c$	$P2_1/n$
<i>a</i> / Å	7.809(2)	4.160(3)	4.7580(9)	6.822(2)	12.641(1)	6.299(3)	3.9530(9)
<i>b /</i> Å	11.176(1)	11.757(2)	6.096(1)	10.474(4)	12.066(2)	13.226(3)	14.583(2)
c / Å	28.679(1)	27.598(7)	10.658(2)	17.097(2)	7.813(1)	14.809(3)	17.893(5)
α / degree	90	90	95.807(2)	73.88(2)	90	90	90
β / degree	90	92.87(1)	90.482(2)	84.29(2)	101.278(1)	93.73(2)	92.16(1)
γ/ degree	90	90	96.397(2)	87.66(2)	90	90	90
V / Å ³	2496.1(8)	1348(1)	305.6(1)	1167.7(6)	1455.6(3)	1231.1	1168.6(4)
Z	8	4	1	2	4	4	4
$\rho_{calc}/(gcm^{\text{-}3})$	1.343	1.710	1.208	1.291	1.274	1.366	1.387
μ / mm ⁻¹	0.756	4.291	0.799	0.673	0.814	0.793	0.672
Rad. Cu K_{α} / Å	1.54180	1.54180	1.54180	1.54180	1.54180	1.54180	1.54180
Difractometer	Nonius CAD-4	Nonius CAD-4	Nonius CAD-4	Nonius CAD-4	Nonius CAD-4	Nonius CAD-4	Nonius CAD-4
θ min/max / degree	3.25/70.09	3.63/66.99	3.89/67.13	4.61/67.06	4.06/67.15	4.36/67.90	2.96/67.16
Refl. collected	2201	2795	1771	4330	2832	4082	2170
Data/restr/param	2126/0/173	1995/0/156	1764/1/209	4185/0/314	2465/0/185	3528/0/274	4885/0/344
Abs. cor. T_{mx}/T_{mn}	none	0.6568/0.5180	none	none	none	none	none
R _{int}	0.0111	0.0219	0.0330	0.0248	0.0157	0.0596	0.0245
R	0.0557	0.0809	0.0492	0.0701	0.0820	0.0660	0.0680
R _w	0.1557	0.2286	0.1547	0.1953	0.3328	0.1611	0.1987
S on F ²	1.084	1.103	1.080	1.168	1.099	1.150	1.078
Max/min peaks / (e Å ⁻³)	0.360/-0.357	0.328/-0.232	0.223/-0.267	0.357/-0.374	0.528/-0.420	0.417/-0.409	0.234/-0.287

Figure S1. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3a.

Figure S2. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3a.

Figure S3. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3b.

Figure S5. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3c.

Figure S6. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3c.

Figure S7. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3d.

Figure S8. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3e.

Figure S9. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3e.

Figure S10. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3f.

Figure S11. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3f.

Figure S12. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3g.

Figure S13. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3g.

Figure S14. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3h.

Figure S15. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3h.

Figure S16. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3i.

Figure S17. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3i.

Figure S18. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3j.

Figure S19. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3j.

Figure S20. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3k.

Figure S21. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3k.

Figure S22. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3l.

Figure S23. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3l.

Figure S24. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3m.

Figure S25. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3m.

Figure S26. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3n.

Figure S27. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3n.

Figure S28. ¹H NMR (300 MHz, d₆-DMSO) spectrum of compound 30.

Figure S29. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 30.

Figure S30. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3p.

Figure S31. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3p.

Figure S32. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3q.

Figure S33. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3r.

Figure S34. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3r.

Figure S35. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3s.

Figure S36. ¹³C NMR (75 MHz, CDCl₃) spectrum of compound 3s.

Figure S37. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3t.

Figure S38. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 3u.

Figure S39. ¹³C APT (75 MHz, CDCl₃) spectrum of compound 3u.