

Cyclodipeptides from Metagenomic Library of a Japanese Marine Sponge

Rui He,^{a,b,c} Bochu Wang,^{*,b} Toshiyuki Wakimoto,^c Manyuan Wang,^a Liancai Zhu^b and Ikuro Abe^{*,c}

^aSchool of Traditional Chinese Medicine, Capital University of Medical Sciences, No. 10 Xitoutiao, You An Men, 100069 Beijing, P. R. China

> ^bBioengineering College, Chongqing University, No. 174, Shanpingba Main Street, 400030 Chongqing, P. R. China

^cGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan

Comparative data of cyclodipeptide 1-7 production in clone pDC113 and negative control (NC, strain EPI300 carrying pCC1FOS fosmid vector)

The respective 2 plates of pDC113 and NC were cultured in the same conditions (30 °C, **3d**) and subjected to the same extraction and separation procedures and finally using same volume of MeOH to dissolve the LH-20

cyclodipeptides fraction before injection (both 5 μ L) to RP-HPLC-DAD. HPLC analysis was performed on ODS column (Cosmosil 5C₁₈ PAQ waters, 4.6 × 250 mm) with a mixture of H₂O and MeCN, both containing 0.05% TFA: 0-20 min, 5-35% MeCN; 20-45 min, 35-100% MeCN; and 45-55 min, 100% MeCN, 0.8 mL min⁻¹. DAD profiles were measured with a Shimadzu HPLC System: LC-20AD and SPD-20A Prominence Diode Array Detector.

Figure S1. RP-HPLC-DAD profile of LH-20 fraction of pDC113 and NC. Blue line indicates profile of pDC113; black line indicates profile of negative control.

¹H, ¹³C chemical shifts, and ¹H-¹H COSY data of cyclodipeptides 1-7 and 9

Figure S2. Chemical shifts and COSY of cyclodipeptides 1-7 and 9. ¹H NMR (500 MHz) chemical shifts (blue), ¹³C NMR (125 MHz) chemical shifts (red) and ¹H-¹H COSY (bold line and arrows) are shown.

He et al.

¹H, ¹³C chemical shifts, and ¹H-¹H COSY data of cyclodipeptides 8, 10 and 11

Figure S3. Chemical shifts and COSY of cyclodipeptides 8, 10 and 11. ¹H NMR (500 MHz) chemical shifts (blue), ¹³C NMR (125 MHz) chemical shifts (red), and main ¹H-¹H COSY (bold line) correlations are shown. ¹³C NMR of 10 were inferred from its HMQC and some of HMBC data.

Figure S4. ¹H NMR spectrum of Cyclo(L-Leu-L-Pro) (4) (500 MHz, CDCl₃).

Figure S5. ¹³C NMR spectrum of Cyclo(L-Leu-L-Pro) (4) (125 MHz, CDCl₃).

Figure S6. ¹H-¹H COSY spectrum of Cyclo(L-Leu-L-Pro) (4).

Figure S7. HMQC spectrum of Cyclo(L-Leu-L-Pro) (4).

Figure S8. HMBC spectrum of Cyclo(L-Leu-L-Pro) (4).

Figure S9. ¹H NMR of Cyclo(L-Thr-L-Leu) (1) (500 MHz, CD₃OD).

Figure S10. $^{\rm 13}{\rm C}$ NMR of Cyclo(L-Thr-L-Leu) (1) (125 MHz, CD_3OD).

Figure S11. ¹H-¹H COSY of Cyclo(L-Thr-L-Leu) (1).

Figure S12. ¹H NMR of Cyclo(L-Val-D-Pro) (2) (500 MHz, $CDCl_3$).

Figure S13. ¹³C NMR of Cyclo(L-Val-D-Pro) (2) (125 MHz, CDCl₃).

Figure S14. ¹H-¹H COSY of Cyclo(L-Val-D-Pro) (2).

Figure S15. ¹H NMR of Cyclo(L-Ile-D-Pro) (3) (500 MHz, $CDCl_3$).

Figure S16. $^{\rm 13}C$ NMR of Cyclo(L-Ile-D-Pro) (3) (125 MHz, CDCl_3).

Figure S17. ¹H-¹H COSY of Cyclo(L-Ile-D-Pro) (3).

Figure S18. ¹H NMR of Cyclo(L-Val-L-Leu) (5) (500 MHz, $CDCl_3$).

Figure S19. ¹³C NMR of Cyclo(L-Val-L-Leu) (5) (125 MHz, CDCl₃).

Figure S20. ¹H-¹H COSY of Cyclo(L-Val-L-Leu) (5).

Figure S21. ¹H NMR of Cyclo(L-Leu-L-Ile) (6) (500 MHz, CD_3OD).

Figure S22. ¹³C NMR of Cyclo(L-Leu-L-Ile) (6) (125 MHz, CD_3OD).

Figure S23. ¹H-¹H COSY of Cyclo(L-Leu-L-Ile) (6).

Figure S24. ¹H NMR of Cyclo(L-Leu-L-Leu) (7) (500 MHz, CD_3OD).

Figure S25. $^{\rm 13}C$ NMR of Cyclo(L-Leu-L-Leu) (7) (125 MHz, CD_3OD).

Figure S26. ¹H-¹HCOSY of Cyclo(L-Leu-L-Leu) (7).

Figure S27. ¹H NMR of Cyclo(L-Phe-L-Tyr) (8) (500 MHz, DMSO).

Figure S28. ¹³C NMR of Cyclo(L-Phe-L-Tyr) (8) (125 MHz, DMSO).

Figure S29. ¹H-¹H COSY of Cyclo(L-Phe-L-Tyr) (8).

Figure S30. ¹H NMR of Cyclo(L-Trp-L-Pro) (9) (500 MHz, CD₃OD).

Figure S31. ¹³C NMR of Cyclo(L-Trp-L-Pro) (9) (125 MHz, CD₃OD).

Figure S32. ¹H NMR of Cyclo(L-Val-L-Trp) (10) (500 MHz, DMSO).

Figure S33. ¹H-¹H COSY of Cyclo(L-Val-L-Trp) (10).

Figure S34. Some easily detected HMBC of Cyclo(L-Val-L-Trp) (10).

Figure S35. HMQC of Cyclo(L-Val-L-Trp) (10).

Figure S36. ¹H NMR of Cyclo(L-Ile-L-Trp) (11) (500 MHz, DMSO).

Figure S37. ¹H-¹H COSY of Cyclo(L-Ile-L-Trp) (11).

LC-MS data of cyclodipeptides 8-11

Figure S38. LC-MS data of cyclodipeptides 8-11.

Liquid chromatography-mass spectrometry (LC-MS, Agilent 1100 series-Bruker Esquire 4000) analysis was performed on ODS column (TSK-Gel ODS-80Ts, 4.6×150 mm) with a mixture of H₂O and MeCN, both

containing 0.1% acetic acid: 30-100% MeCN 30 min; 100% MeCN 10 min, 0.2 mL min⁻¹. Detected wavelength: 280 nm. Positive ESI.