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Neste estudo, simulações de dinâmica molecular (MD) e docking foram realizadas a fim de 
investigar o sítio de ligação e as interações de 61 inibidores com o receptor de kinase-5 do tipo 
ativina (ALK5). Uma simulação MD foi realizada sobre o receptor para obter sua conformação 
em água. A análise de docking revelou que interações do tipo ligação hidrogênio e hidrofóbicas 
desempenham papéis importantes no complexo inibidor-ALK5. Estas interações foram confirmadas 
por cristalografia de raios X. Além disso, para estudar a estabilidade da conformação do receptor, 
uma segunda simulação MD sobre o complexo foi realizada em um ambiente aquoso. O raio de 
giro para o complexo mostrou que a conformação de ALK5 não muda na presença do inibidor. 
Foram calculados 134 descritores obtidos da estrutura molecular e docking; os mais viáveis foram 
usados em relações quantitativas entre estrutura química e atividade biológica (QSAR). A regressão 
de vetores-suporte baseada em mínimos quadrados (LS-SVR) apresentou um modelo confiável 
com Q2 = 0,837 e R = 0,917. Finalmente, os tipos de interações e propriedades dos descritores 
foram usados para propor novos inibidores. 

In this study, molecular docking and molecular dynamics (MD) simulations were conducted to 
investigate both the binding site and interactions of 61 inhibitors with activin-like kinase-5 (ALK5) 
receptor. A MD simulation was performed on the receptor to obtain receptor conformation in a 
water environment. Docking analysis revealed that hydrophobic and hydrogen bonding interactions 
play important roles in ALK5-inhibitor complex. These interactions were confirmed by X-ray 
crystallography. Furthermore, to study receptor conformation stability, a second MD simulation on 
complex was performed in an aqueous environment. Radius of gyration for complex showed that 
the ALK5 conformation did not change in the presence of the inhibitor. 134 descriptors emerging 
from docking and molecular structure were calculated and the most feasible ones were used in 
quantitative structure -activity relationships (QSAR). The LS-SVR (least squares support vector 
regression) gave reliable model with Q2 = 0.837 and R = 0.917. Finally, the types of interactions 
and properties of the descriptors were used to propose new inhibitors. 

Keywords: ALK5, docking, molecular dynamics simulation, least squares support vector 
regression, QSAR

Introduction

The main member of the transforming growth factor β 
(TGF-β) superfamily was discovered over 20 years ago in 
normal rat kidney fibroblasts.1 TGF-β is composed of two 
large branches represented by the prototypic TGF-βs, bone 
morphogenetic proteins (BMPs), and growth differentiation 
factors (GDFs).2 The TGF-β signaling plays key roles 
in the regulation of a variety of physiological processes 
including cell proliferation and differentiation as well as 
development of fibrosis in various organs such as kidney, 

heart, lung, and liver, as well as in the immunity response.3-5 
Deregulation of TGF-β signaling causes a variety of 
human diseases including cancer,6 pancreatic diseases,7 and 
hematological malignancies.8 TGF-βs signal is initiated 
through a heterotetrameric receptor complex that consists 
of two transmembrane serine/threonine kinase receptor, 
'type I' receptor (TbRI) or activin-like kinase 5 (ALK5) 
and 'type II' (TbRII), which is a transmembrane serine/
threonine kinase receptor.9 Upon TGF-β binding, TbRII 
phosphorylates ALK5 in the GS region. The activated 
ALK5 in turn phosphorylates Smad2/Smad3 proteins at 
the C-terminal SSXS-motif, thereby causing dissociation 
from the receptor and heteromeric complex formation with 



Interactions between Activin-Like Kinase 5 (ALK5) Receptor and its Inhibitors J. Braz. Chem. Soc.2044

Smad4. This complex is delivered to the nucleus where it 
regulates the transcription of specific genes, giving rise to 
cell differentiation, proliferation, apoptosis, migration, and 
extracellular matrix production.10-12 Clearly, inhibition of 
phosphorylation of Smad2/Smad3 by ALK5 could reduce 
TGF-β-induced pathological fibrosis.13 Studies have shown 
that several small molecule inhibitors block ALK5 catalytic 
activity. Ren et al.14 developed 3D pharmacophore models 
on 106 ALK5 inhibitors reported in the literature.14 They 
used the best quantitative pharmacophore model (Hypo1) 
as a 3D search query on the known ALK5 inhibitors and, 
finally, selected several compounds for further in vitro 
and in vivo assay studies. Geldenhuys and Nakamura15 
presented a 3D-QSAR (quantitative structure-activity 
relationship ) model, comparative molecular field analysis 
(COMFA), for 23 compounds of ALK5 inhibitors, all of 
which share a similar central core consisting of imidazole 
with a pyridine ring.15 Docking results showed that 
hydrogen bonding groups play an important role in affinity 
for kinase. Jin et al.,16 Gellibert et al.17 and Yakymovych 
et al.18 have reported different classes of ALK5 inhibitors. 
Modeling methods such as QSAR models have been found 
to be valuable in further optimization and development of 
novel inhibitors in drug design.19

Docking descriptors are calculated based on the 
major interactions between inhibitors and receptor such 
as hydrophobic, hydrogen bonding, salt bridge, close 
contact and π interactions. Thus, the obtained QSAR model 
from these descriptors could be very useful for rational 
drug design. It is the objective of the present study to 
identify the interactions between the ALK5 receptor and 
these inhibitors. A structure-based QSAR model is also 
developed to represent relationship between descriptors 
originating from docking and the activities of the inhibitors. 
Finally, new potent inhibitors will be proposed based on 
the results obtained on inhibitor-receptor interactions and 
the properties of the descriptors.

Experimental

Preparation of data set 

The data set (Table 1) containing the inhibitory activities 
in the logarithmic scale (pIC50 = log 1/IC50) was obtained 
from Jin et al.,16 Gellibert et al.17 and Yakymovych et al.18 The 
basic structures of these inhibitors are shown in Scheme 1. 
The data set was randomly divided into two groups, the 
training and the test sets, consisting of 49 and 12 inhibitors, 
respectively. The training set was used for model generation 
and the test set for model evaluation. The structure of the 
inhibitors was drawn in the Hyperchem package version 7.0 

(Hypercube, Inc.).20 Energy minimization of these inhibitors 
was accomplished using the molecular mechanics method 
with Polak-Ribiere algorithm up to a root mean square 
gradient of 0.1 kcal mol-1. The optimized molecular structures 
were used for docking studies. 

The initial 3D structure of ALK5 in the complex with 
4-((5,6-dimethyl-2-(2-pyridyl)-3-pyridyl)oxy)-n-(3,4,5-
trimethoxyphenyl)pyridin-2-amine at 1.85 Å (PDB ID: 
2WOT) was obtained from Protein Data Bank (PDB).21 

The crystal structure of the receptor contained one chain 
with a length of 306 amino acids and a structure weight 
of 35459.98 Da.

Molecular dynamics simulation 

Molecular dynamics simulation was performed in two 
steps. In the first step, the structure of ALK5 was simulated 
in a water box. In the second, the result of docking of the 
most potent inhibitor, i.e. 3-(6-methylpyridin-2‑yl)-4-([1,2,4]
triazolo[1,5-α]pyridin-6-yl) pyrazoles-1-carbothioic acid 
(4-methoxy-phenyl)-amide (inhibitor 14a), was loaded into 
the MD simulation to obtain receptor conformation. The 
topology parameters of inhibitor 14a were built using the 
Dundee PRODRG2.5 server (beta).22 The MD simulation 
process was carried out by the GROMACS 4.5.1 package 
using the GROMOS-96 force field.23 Water molecules were 
added using a simple point charge (SPC216) model.24 Counter-
ions of Na+ were added by replacing solvent molecules in 
order to neutralize the system. The system was then placed 
in a cubic box with the dimensions 8.63 × 8.63 × 8.63 nm3 
containing 63413 atoms in total. Periodic boundary conditions 
were applied in the xyz space. Initially, energy minimization 
was performed before implementing the position restraint 
procedure. Then, NVT and NPT simulations were carried out. 
The NVT simulation was performed at a constant 310 K with a 
Nose-Hoover thermostat. Once the temperature was stabilized, 
the NPT simulation was performed using the Parrinello-
Rahman pressure coupling under a pressure of 1 bar. The 
particle mesh Ewald (PME) method interaction was used.25 
For numerical integrations, the velocity verlet algorithm was 
used26 and the initial atomic velocities were generated using 
a Maxwellian distribution at the given absolute temperature.27 
Finally, the full system was subjected to 6000 ps MD at 310 K 
under 1 bar pressure. The MD simulation and result analyses 
were performed on the open SUSE 11.3 Linux on an Intel 
Core 2 Quad Q6600 2.4 GHz with 4 GB of RAM. 

Molecular images and evaluation of molecular dynamics

All molecular images and animations were produced 
using molegro virtual docker (MVD)28 and visual molecular 
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Table 1. Inhibitors and the predicted pIC50 by the LS-SVR model (see scheme 1)

Compound R X pIC50

Predicted 
pIC50

47l - 5.93 5.47

48l - 5.89 6.46

49l - 5.75 6.52

50l - 5.99 5.98

51mt - 4.96 4.86

52m - 5.10 5.96

53m - 7.39 7.26

54m - 5.45 6.28

55m - 7.52 7.11

56m - 6.42 6.79

57n 6-CH3 N 7.60 6.82

58nt 4-F CH 7.38 6.79

59n 3-Cl CH 7.64 7.15

60o H - 7.52 6.98

61o CH3 - 7.64 7.31

N.i* - - 10.00

N.i** H - - 7.96

N.i** F - - 7.70
  tThe compounds in test set; LS-SVR, least squares support vector regression; N.i*: New inhibitor with basic structure of inhibitor a; N.i**: New inhibitor 
with basic structure of inhibitor b.

Compound R X pIC50

Predicted 
pIC50

1at H - 8.55 8.87

2at m-F - 8.35 8.55

3a m-Cl - 8.62 8.85

4at m-Me - 8.40 7.64

5a m-CF3 - 8.52 8.31

6a m-OMe - 8.65 8.38

7a m-OCF3 - 8.00 8.44

8a m-CN - 8.35 8.12

9a m-CONH2 - 8.46 8.45

10a p-F - 8.39 8.20

11a p-Cl - 8.41 7.64

12at p-Me - 8.18 8.25

13a p- CF3 - 8.52 8.05

14at p- OMe - 9.24 8.55

15a p- OCF3 - 8.48 8.73

16a p- CN - 8.53 8.96

17a p- CONH2 - 7.81 7.94

18a o-F - 8.27 8.46

19a o-Cl - 8.55 8.22

20a o-Me - 8.40 7.90

21a o-OMe - 8.24 7.96

22a o-OCF3 - 8.40 8.48

23a 3,4-F2 - 8.67 8.52

24at 3,5-F2 - 8.49 8.32

25a 3,4-Cl2 - 8.42 8.36

26a 3,5-Cl2 - 8.29 7.96

27a 3,4-Me2 - 8.45 8.02

28a 3,5-Me2 - 8.40 8.66

29a 3,5-(CF3)2 - 8.38 8.90

30a 3,4-(OMe)2 - 8.36 7.99

31a 3,5(OMe)2 - 8.60 8.27

32bt Me - 7.40 7.85

33b Benzyl - 7.02 7.72

34ct H - 6.99 7.70

35c m-CN - 7.07 7.64

36c m-CONH2 - 7.17 7.70

37d - - 7.26 7.35

38e - - 7.76 7.17

39f - - 6.15 6.85

40g - - 7.69 7.41

41h - - 6.46 6.85

42it - - 5.30 4.59

43j - - 4.52 5.35

44k - - 3.70 3.76

45l - 6.14 5.72

46lt - 5.40 6.39
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dynamics (VMD)29 packages. Schematic two-dimensional 
representations of the docking results were performed using 
LIGPLOT.30

Molecular docking

Docking was performed by AutoDock 4.0 program 
using the Lamarckian genetic algorithm (LGA) method.31 
Autodock is a suitable program for actual docking 
simulation.32 The most potent inhibitor reported in Table 1, 
inhibitor 14a, was docked into the structure extracted 
from MD trajectories of the receptor. All inhibitors were 
subsequently docked into the binding site obtained from 
the receptor and conformation of the inhibitors with the 
lowest binding free energy was used to calculate molecular 
descriptors.

Descriptor calculation 

Descriptors were calculated based on inhibitor-receptor 
interactions using AutoDockTools and BINANA (BINding 
ANAlyzer). AutoDockTools are capable of calculating 

8 types of energy values that consist of: (i) estimated 
free energy of binding (EFreeBind); (ii) estimated inhibition 
constant (ki); (iii) final intermolecular energy (EInterMol), 
which is the sum of the following three types of energy 
(iv) vdW + Hbond + desolv Energy (EVHD); (v) electrostatic 
energy (EElec); (vi) final total energy (EFTot); (vii) torsional 
free energy (ETors); (viii) unbounded system’s energy 
(EUnb),

33 and the Gasteiger charge descriptor. Then, the 
docking conformer at its minimum EFreeBind was loaded 
into BINANA to calculate the descriptors. BINANA is a 
python-implemented algorithm to characterize the binding 
of inhibitor-receptor complex. The BINANA accepts 
receptor and inhibitor files generated by AutodockTools in 
the PDBQT format.34 BINANA descriptors consist of (i) 
close contacts, BINANA determines all ligand and protein 
atoms that come within 2.5 and 4 Å of each other; (ii) 
electrostatic interactions; (iii) hydrophobic contacts, which 
is the sum of the six possible classifications: α-sidechain, 
α-backbone, β-sidechain, β-backbone, other-sidechain, 
and other-backbone; (iv) hydrogen bonds, which allow 12 
possible categorizations: α-sidechain-ligand, α-backbone-
ligand, β-sidechain-ligand, β-backbone-ligand, other-

Scheme 1. Basic structures of ALK5 inhibitors.
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sidechain-ligand, other-backbone-ligand, α-sidechain-
receptor, α-backbone-receptor, β-sidechain-receptor, 
β-backbone-receptor, other-sidechain-receptor and other-
backbone-receptor; (v) salt bridges, and (vi) π interactions.35 
Therefore, 117 descriptors may be calculated from the 
interactions of inhibitors with the receptor in BINANA. 
Also, 7 descriptors were obtained from Hyperchem that 
consist of surface area, volume, hydration energy, log P, 
refractivity, mass and polarizability. 

Theory of least squares support vector regression

Support vector regression (SVR) was originally 
introduced by Cortes and Vapnik.36 Least squares support 
vector regression (LS-SVR) is an alternative method of 
SVR described in Suykens et al.37 LS-SVR always fits 
a linear relation, y  =  wx  +  b, between the independent 
variable (x) and the dependent one (y), where w is a weight 
vector and b is the bias term. Consider a given training set 
{xi,yi}, i = 1, 2,…, N, with input data xi Є R and output 
data yi Є R. The error in the prediction for each sample i 
is defined as:

	 (1)

As in SVR, it is necessary to minimize a cost function 
C containing a penalized regression error, as in equation 2: 

	 (2)

Subject to

	 (3)

The parameter γ, which has to be optimized by the user, 
gives the relative weight of this part as compared to the 
first part.38 The Lagrangian for this problem is defined as: 

	 (4)

where α refers to Lagrange multipliers, which can be either 
positive or negative due to the equality constraints in the 
LS-SVR algorithm. Optimum conditions can be obtained 
by setting all derivatives of L(w, b, e; α) equal to zero. Upon 
eliminating the variables w and e, one gets the following 
set of linear equations:

	 (5)

	 (6)

The training samples are only present in equation 5 as 
the inner product. This allows this standard inner product 
to be substituted with the most popular choice of the kernel 
types, i.e. the radial basis kernel function (RBF), defined as: 

	 (7)

where σ is the radial basis function of the kernel parameter. 
RBF function can also handle the nonlinear relationship 
between the input and the output.39 The free LS-SVM 
toolbox (LS-SVM V-1.5, Suykens, Leuven, Belgium) was 
used in MATLAB Version 7.6 to derive all the LS-SVM 
models.40

Applicability domain

In order to obtain a reliable prediction for the test 
compounds, the exploration of applicability domain (AD) 
for a QSAR model is necessary. Here a leverage approach 
was used to verify the prediction reliability. A simple 
measure of the applicability domain of the model is its 
leverage hi, which is defined as:

	 (8)

where xi is the descriptor row-vector of the query compound 
i and X is the n × k matrix of the training set (k is the number 
of model descriptors, and n is the number of training set 
samples). The warning leverage (h*) is, generally, fixed at 
3(k+1)/n, where k is the number of model descriptors and 
n is the number of training compounds. 41-43

Results and Discussion

Molecular dynamics simulation of the ALK5 receptor 

To provide conformation of ALK5 in a water 
environment, a 6000 ps MD simulation was carried out 
on ALK5 in a water box. The stability of the system 
(protein, water, and ions) was tested by means of the root 
mean square deviations (RMSD’s) of protein with respect 
to protein’s initial structure. The RMSD values of ALK5 
were plotted from 0 to 6000 ps which imply that the RMSD 
of the system reaches equilibrium and oscillates around 
0.45 nm after 3800 ps of the simulation onset. The average 
RMSD value of protein backbone was calculated to be 
0.45 ± 0.03 nm. The RMSD value indicates that ALK5 
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conformation reached equilibrium after 3800 ps in a water 
environment. The equilibrated conformation of the receptor 
was used for docking.

Molecular docking

In order to determine the binding site in ALK5 receptor, 
blind docking was performed on receptor with the most 
potent inhibitor (14a). In blind docking the grid map set 
to 92 × 92 × 92 Å along the x, y and z axes with 0.375 Å 
grid spacing. The center of grid map set to 9.218, 1.277 and 
12.584 Å. The grid maps were obtained using AutoGrid. 
The obtained binding site from blind docking was used for 
docking of all inhibitors. In these dockings, a grid map of 
the size 60 × 60 × 60 Å with a grid-point spacing of 0.375 Å 
was generated. The maps were centered on the inhibitor’s 

binding site in a center grid box 8.994, 5.928 and 12.693 Å 
for the x, y and z centers of the receptor, respectively. For 
conformational search, docking calculations were carried 
out using the Lamarckian genetic algorithm (LGA) method 
with default parameters. The residues of the binding site 
obtained were Ala230, Ala350, Asp351, Gly286, His283, 
Ile211, Leu260, Leu278, Leu340, Lys232, Ser287, Ser280, 
Tyr282, Val219 and Val231 in the cavity of the receptor. 
The LIGPLOT software was employed to show the 
hydrophobic and hydrogen bonding interactions. These 
interactions are shown in Figure 1. The hydrogen bonds 
(Figure 1) are generated between the His238 residue and 
the inhibitors. Furthermore, in the X-ray crystal structure of 
inhibitor 61 with ALK5,17 there is a hydrogen bond between 
N1 nitrogen of the inhibitor 61 and the backbone NH of 
His283. His 283 is a key residue in most reported ALK5 

Figure 1. Two-dimensional schemes of interactions between inhibitors of 14a, 40g, 53m and 59n with ALK5 generated by LIGPLOT.
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complexes by X-ray in protein data bank (PDB ID: 2WOT 
and 2WOU). Therefore, obtained binding site from docking 
is in agreement with X-ray crystallography. Results of 
molecular docking indicated that the interactions between 
the inhibitor and ALK5 are dominated by hydrophobic and 
hydrogen bond. The hydrophobic interactions are generated 
by the close contacts between the non-polar amino acid 
side chains of the receptor and the lipophilic groups of 
the inhibitor. It may be suggested that more hydrophobic 
interactions at the binding site could improve the inhibitory 
activity of the inhibitors. 

Molecular dynamics simulation of the ALK5-inhibitor 
complex

In order to determine the effect of inhibitor on the 
receptor conformation we decided to perform a MD 
simulation. The simulation procedure was assessed by 
carrying out a 6000 ps MD simulation on the 14a‑ALK5 
complex in a water box. Trajectory stability was 
investigated by analyzing RMSD. The average RMSD 
values of the protein backbone of the complex and ALK5, 
Figure  2, were calculated to be 0.47 ± 0.05 nm and 
0.45 ± 0.03 nm, respectively. Furthermore, to investigate 
the conformational changes of the receptor, radius of 
gyration (Rg) values for the complex and ALK5 were 
also compared. The average values of Rg, Figure 3, for 
the complex and ALK5 were calculated to be 0.60 ± 0.05 
and 0.59 ± 0.03 nm, respectively. These results indicate 
that the receptor conformation has not changed in the 
presence of inhibitor 14a. The stability of the receptor 
conformation in the presence of the inhibitor confirmed 
the docking results, since the hydrophobic intermolecular 
interactions between the inhibitor and the receptor are 
weak interactions and these interactions do not affect the 
receptor conformation. 

Descriptor calculation and selection 

As already mentioned, 132 descriptors were calculated 
for the inhibitors based on inhibitor-receptor interactions 
using AutoDockTools, BINANA and Hyperchem 
software. Once the descriptors had been calculated, 
those that remained constant for all the molecules 
were eliminated and pairs of variables with a Pearson 
correlation coefficient  > 0.80 in bivariate correlations 
were classified as intercorrelated, one of which was 
eliminated. Subsequently, the stepwise multiple linear 
regression was carried out on the training set for selecting 
the most effective descriptors by SPSS software (version 
13; SPSS Inc.). Since the number of descriptors should be 
five times less than that of the molecules in the training 
set,44 eight descriptors were selected for constructing the 
QSAR model. 

These descriptors were volume (V), estimated free 
energy of binding (DG), hydrophobic contacts carbon-
carbon β-sidechain (HCβ. C-C), summed electrostatic 
energy acceptor-carbon atoms (SEE. A-C), summed 
electrostatic energy acceptor-nitrogen atoms (SEE. A-N), 
summed electrostatic energy nitrogen-accepting nitrogen 
atoms (SEE. N-NA), summed electrostatic energy acceptor 
nitrogen-acceptor sulfur atoms (SEE. NA-SA) and number 
of close contacts between carbon and acceptor oxygen 
atoms in distance of 4.0 Å of each other (NCC4. C-OA). 
The correlation matrix obtained for the selected descriptors 
are given in Table 2. It can be observed that the correlation 
coefficient between each pair of the descriptors is less 
than 0.68.

LS-SVR model

The selected descriptors were used as input for 
constructing the LS-SVR model. In order to generate 

Figure 2. RMSD values of protein backbone for ALK5 and ALK5 complex 
during 6000 ps MD simulation.

Figure 3. Time evolution of the radius of gyration (Rg) during 6000 ps 
of MD simulation of ALK5 and ALK5 complex.
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a LS-SVR model, an appropriate set of regularization 
parameters, γ, and kernel parameters such as σ2 for the 
radial basis function (RBF) kernel should be chosen. In this 
work, the radial basis kernel function was used because it is 
a non-linear function that can decrease the computational 
complexity of the training procedure.45,46 The next step in 
the construction of the LS-SVR model is optimization of 
its parameters, including γ and σ2, which were found to be 
191.4 and 214.8, respectively, using the grid search method. 
The values of correlation coefficient (R) for training and 
test set in the LS-SVR model as a non-linear model were 
found to be 0.929 and 0.917, respectively. 

LS-SVR model validation 

The generated QSAR model was validated by root mean 
square error (RMSE) and cross-validation (Q2) of the test 
set. RMSE was calculated as in equation 9,

	 (9)

where N is the number of data patterns in the independent 
data set, ypre,i designates the predicted value, and yex,i is 
the experimental value of one data point i. The values 
of RMSE for the training and test set in LS-SVR model 
were calculated to be 0.453 and 0.560, respectively. As 
recommended by Tropsha and co-workers,47,48 several 
statistical parameters were used for evaluating the 
significance and predictive power of QSAR models. A 
proper and predictive model should have a Q2 value larger 
than 0.5 and a correlation coefficient of prediction (r2) above 
0.6. The Q2 value is calculated from equation 10, 

	 (10)

where yi and ŷi are the measured and predicted values of the 
dependent variable (over the test set), respectively, and –ytr is 
the average value of the dependent variable for the training 
set. The summation runs over all compounds in the test set. 

The calculated statistical parameters of LS-SVR model 
are presented in Table 3. As can be seen in Table 3, the 
statistical parameters for the LS-SVR model show the 
excellent performance of the model. Table 1 presents the 
predicted values for inhibitory activity. The predicted 
LS-SVR values were plotted versus their experimental 
values, Figure 4, indicating a good agreement between the 
experimental and predicted values. 

Moreover, in order to assess the predictive power 
of QSAR model, correlation coefficients between 
predicted and experimental values of inhibitory activity of 
compounds from an external prediction set (r2

p), correlation 
coefficients for regressions through the origin (predicted 
versus experimental inhibitory activities, or experimental 
versus predicted activities, i.e., r 2

p or r '2
p, respectively) and 

the slope of the regression lines through the origin (k 
and k’, respectively) were also calculated. As suggested 
by Tropsha, a suitable QSAR model should satisfy all 

Table 2. The correlation matrix of the selected descriptors

∆G V NCC4. C-OA SEE. A-C SEE. A-N SEE. N-NA SEE. NA-SA HC β. C-C

∆G 1 −0.678 −0.126 −0.116 −0.232 −0.103 −0.483 −0.112

V 1 −0.356 0.245 0.121 −0.097 0.565 −0.05

NCC4. C-OA 1 0.005 −0.045 −0.163 0.168 0.140

SEE. A-C 1 0.229 −0.013 0.133 −0.223

SEE. A-N 1 −0.121 0.115 −0.405

SEE. N-NA 1 0.007 0.332

SEE. NA-SA 1 −0.155

HC β. C-C 1

Figure 4. Plot of predicted inhibitory activity versus experimental values 
using LS-SVR model.
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of the following conditions (i) Q2 > 0.5, (ii)  r 2
p  >  0.6, 

(iii) r2
0p or  r'2

0p is close to r2
p, such that [(rp

2 – r0p
2 )/r0p

2  or  
[(rp

2 – r0p
'2 )/r0p

2  < 0.1, (iv) 0.85 ≤ k ≤ 1.15 or 0.85 ≤ k’ ≤1.15. 
These values were calculated to be 0.837, 0.841, 0.009, 
0.007, 0.993 and 1.000 for the LS-SVR model. 

 In addition, another statistic for external validation 
(r2

m) was calculated as rm
2 = rp

2*[1 – (rp
2 – r0

2)1/2] as suggested 
by Roy and Roy.49 For a model with good external 
predictability, the value for rm

2 should be > 0.5. The value 
of rm

2 was found to be 0.766 in the LS-SVR model. The 
results are given in Table 3. According to recommendation 
of Tropsha and Golbraikh,47,48 if difference between R2 and 
Q2 did not exceed 0.3, there is no over-fitting in the model. 
In the present work, the difference between R2 and Q2 was 
0.004, indicating no over-fitting in the LS-SVR model.

Applicability domain 

The predictive reliability of LS-SVR model was carried 
out using applicability domain. In this study, the value of 
warning leverage was calculated (h* = 0.55). A leverage 
value greater than h* for the training set (h > h*) means 
that the inhibitor seriously influences on the model, while 
for the test set, it means that the prediction is the result 
of substantial extrapolation of the model and could not 
be reliable. To visualize the applicability domain of LS-
SVR model, the standardized residuals versus leverage 
values were plotted and the results are shown in Figure 5. 
A compound with cross-validated standardized residual 
greater than 3σ (3 standard deviation units) is recognized 
as Y outlier. Figure 5 shows that all predictions are reliable 
for LS-SVR model and there is no outlier compound both 
for training and test sets, indicating the reliability of the 
predictions. 

 The results of statistical parameters (Table 3) and 
applicability domain represented that the LS-SVR model 
had a high predictive ability and was able to fulfill all 
the criteria to be accepted as a predictive model for the 
inhibitory activity.

Sensitivity analysis 

In order to determine the relative importance of each 
descriptor in the LS-SVR model, a developed sensitivity 
analysis approach was used to rank the importance of the 
input descriptors of the LS-SVR model.50 The performed 
sensitivity analysis is based on consecutive removal of 
descriptors by zeroing the specific connection weights for 
an input descriptor in the LS-SVR model. According to 
this method, the differences between the root-mean-square 
error (RMSE) of the complete model’s prediction and the 
RMSE obtained when the ith variable is excluded from 
the trained model (RMSEi) reveals the importance of the 
ith input descriptor:

Rmdiff = RMSEi − RMSE 	 (11)

It is obvious that the most important descriptor is the 
one that leads to the highest value of Rmdiff. The values 
of Rmdiffi for the LS-SVR model are plotted in Figure 6. 
As shown in this Figure, the order of importance is SEE. 
A-C > SEE. A-N > SEE. NA-SA > NCC4. C-OA > HC β. 

Table 3. Statistical parameters of the external test set for LS-SVR model

Parameter LS-SVR

Q2 0.837

rp
2 0.841

[(rp
2  – r0p

2 )/r0p
2 ] 0.009

[(rp
2  – r0p

'2 )/r0p
2 ] 0.007

rm
2 0.766

rm
'2 0.776

K 0.993

K' 1.000

Figure 5. Plot of standardized residuals versus leverages. Horizontal 
dash lines represent ± 3σ, vertical dash line represents warning leverage 
(h* = 0.55).

Figure 6. Result of sensitivity analysis for the LS-SVR model.
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C-C > SEE. N-NA >V > DG. Four descriptors consisting 
of SEE. A-C, SEE. A-N, SEE. NA-SA and SEE. N-NA are 
summed electrostatic energies. For each atom-type pair 
of atoms that come within 4.0 Å of each other, a summed 
electrostatic energy is calculated using the Gasteiger partial 
charges assigned by AutoDockTools: 

	 (12)

where V(a,b) is the summed electrostatic interaction energy 
of all the atoms of types a and b, respectively, qai 

is the 
partial atomic charge of an atom of type a, qbi

 is the partial 
atomic charge of an atom of type b, and raibi

 is the distance 
between a and b atoms.34 Another descriptor in the model 
is numbers of atom-type pair counts at a distance of 4.0Å 
from C-OA. This descriptor shows the number of contacts 
between carbon-oxygen atoms of the receptor and the 
inhibitor located at a distance of 4.0Å.35 In this distance 
there are the van der Waals interactions between carbon 
atoms with oxygen. The Van der Waals attractions operate 
over only a very limited range of interaction distances 
between 3 and 6 Å.51, 52 The next descriptor that represents a 
significant effect on the inhibitory activity of the inhibitors 
is hydrophobic contacts (β-sidechain) of carbon-carbon 
interaction between the receptor and the inhibitors obtained 
from BINANA. Volume is another important descriptor in 
interaction between receptor with inhibitor which can affect 
on the inhibitory activity of inhibitors. The final descriptor 
in this work is free energy of binding defined as follows:

	 (13)

where, ∆Gvdw = van der Waals or Lennard-Jones potential, 
∆Gelec = electrostatic factor with distance-dependent 
dielectric, ∆Ghbond = H-bonding potential with directionality, 
∆Gdesolv = charge-dependent variant of volume-based atomic 
solvation, ∆Gtors = torsional energy based on the number of 
rotatable bonds and ∆Gintermol = intermolecular energy of 
protein and inhibitor molecules.53

Proposed potent inhibitors 

New potent inhibitors were proposed based on the 
inhibitor-receptor interactions and descriptor properties. 
A new inhibitor was proposed based on the structure of 
inhibitor a. In this inhibitor, R was replaced by a pyrrole ring 
in para position, which exhibited the highest activity in this 
category of the inhibitors. In addition, two new inhibitors 

were proposed based on inhibitor b with substituents H and 
F in the R position with the highest activity. The values of 
predicted pIC50 for these inhibitors are given in Table 1. 

Conclusions

In this work molecular docking was carried out to 
explore the binding site. Docking analysis showed that 
hydrogen bonding and hydrophobic interactions are 
important factors in the interactions between the inhibitors 
and receptor. After docking of the most potent inhibitor 
with receptor, the residues of the binding site obtained 
were Ala230, Ala350, Asp351, Gly286, His283, Ile211, 
Leu260, Leu278, Leu340, Lys232, Ser287, Ser280, 
Tyr282, Val219 and Val231 in the cavity of the receptor. 
X-ray crystallography of ALK5-inhibitor 61 complex and 
ALK5-inhibitor complexes with PDB ID: 2WOT and 
2WOU in protein data bank confirmed the results of the 
docking studies. Molecular dynamics Simulation of the 
complex demonstrated that the receptor conformation was 
not changed in the presence of the inhibitor.

Finally, 3 new potent inhibitors were proposed based 
on the results of the inhibitor-receptor interactions and 
properties of the descriptors. 
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