

RP TLC-Based Lipophilicity Assessment of Some Natural and Synthetic Coumarins

El Hadi M. A. Rabtti,^a Maja M. Natić,^a Dušanka M. Milojković-Opsenica,^a Jelena Đ. Trifković,^a Ivan M. Vučković,^a Vlatka E. Vajs^b and Živoslav Lj. Tešić^{*,a}

^aFaculty of Chemistry, University of Belgrade, P. O. Box 51, 11158 Belgrade, Serbia ^bInstitute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia

General

Optical rotation: Rudolph Research Analytical AUTOPOL IV Automatic Polarimeter.

UV spectra: GBC Cintra 40 UV-Visible spectrometer. ¹H and ¹³C nuclear magnetic resonance (NMR) spectra: at 500 and 125 MHz, respectively (Bruker Avance III 500 spectrometer), with CDCl₃ as solvent and TMS as reference; EIMS (75 eV): Agilent 7890A GC/MS system equipped with a 5975 MSD detector; HR ESI MS: Agilent Technologies 6210 Time-of-flight LC/MS system.

Preparative high performance liquid chromatography (HPLC): Agilent Technologies 1100 LC system equipped with a 1200 series fraction collector.

Anomalin (1)

White powder; $[\alpha]_{D}^{20} + 8.0^{\circ}$ (*c* 0.1, MeOH); UV (ACN/H₂O) λ_{max} /nm 204, 218, 254, 296 *sh*, 324; EI MS *m*/*z* (rel. int.) 327 [M + H-AngOH]⁺ (30), 311 (30), 243 (10), 229 (50), 213 (25), 83 (100), 55 (40); HR ESI MS *m*/*z* 875.3271 [2M + Na]⁺, 490.1854 [M + NH₄ + HCOOH]⁺, 449.1594 [M + Na]⁺, 444.2039 [M + NH₄]⁺ i 327.1251 [M + H-AngOH]⁺; ¹H NMR in Table S1; ¹³C NMR in Table S2.

Isopteryksin (2)

[α]_D²⁰ +1° (*c* 0.2, MeOH); UV (ACN/H₂O) λ_{max} /nm 204, 218, 254 *sh*, 294 *sh*, 322; EI MS *m/z* (rel. int.) 386 [M]⁺ (8), 311 (8), 286 (10), 261 (5), 244 (35), 229 (100), 213 (25), 191 (15), 83 (60), 55 (25); HR ESI MS *m/z* 795.2619 [2M + Na]⁺, 450.1533 [M + NH₄ + HCOOH]⁺, 409.1269 [M + Na]⁺, 404.1715 [M + NH₄]⁺, 327.1239 [M + H-AngOH]⁺; ¹H NMR in Table S1; ¹³C NMR in Table S2.

Isolaserpitin (3)

[α]_D²⁰-63° (*c* 0.1, MeOH); UV (ACN/H₂O) λ_{max} /nm 204, 220, 248 *sh*, 296 *sh*, 324; EI MS *m/z* (rel. int.) 344 [M]⁺ (2), 311 (10), 244 (70), 229 (15), 213 (55), 201 (100), 173 (25) 83 (45), 55 (30); HR ESI MS *m/z* 711.2411 [2M + Na]⁺, 362.1607 [M + NH₄]⁺, 327.1282 [M + H-H₂O]⁺; ¹H NMR in Table S1; ¹³C NMR in Table S2.

Laserpitin (4)

 $[\alpha]_{D}^{20}$ +92° (*c* 0.1, MeOH); UV (ACN/H₂O) λ_{max} /nm 204, 218, 246 *sh*, 292 *sh*, 324; EI MS *m/z* (rel. int.) 344 [M]⁺ (15), 311 (10), 244 (75), 229 (35), 213 (30), 201 (100), 173 (30) 83 (90), 55 (35); HR ESI MS *m/z* 711.2432 [2M + Na]⁺, 362.1623 [M + NH₄]⁺, 245.0831 [M + H-AngOH]⁺; ¹H NMR in Table S1; ¹³C NMR in Table S2.

Meranzin (5)

[α]_D²⁰ +34° (*c* 0.06, MeOH); UV (ACN/H₂O) λ_{max} /nm 202, 220 *sh*, 246 *sh*, 322; HR ESI MS *m/z* 278.1401 [M + NH₄]⁺, 261.1146 [M + H]⁺, 343.1028 [M + H-H₂O]⁺; ¹H NMR in Table S1; ¹³C NMR in Table S2.

Phellopterin (6)

UV (MeOH) λ_{max} /nm 222, 248, 268, 312; HR ESI MS *m*/*z* 301.1190 [M + H]⁺, 623.1862 [2M + Na]⁺; ¹H NMR in Table S1; ¹³C NMR in Table S2.

^{*}e-mail: ztesic@chem.bg.ac.rs

Н	Anomalin 1	Isopteryksin 2	Isolaserpitin 3	Laserpitin 4	Meranzin 5	Phellopterin 6
3	6.22 d (9.4)	6.23 d (9.5)	6.25 d (9.5)	6.22 d (9.4)	6.26 d (9.5)	6.28 d (9.8)
4	7.58 d (9.4)	7.60 d (9.5)	7.64 d (9.5)	7.60 d (9.4)	7.64 d (9.5)	8.12 d (9.8)
5	7.35 d (8.5)	7.35 d (8.6)	7.34 d (8.6)	7.35 d (8.6)	7.36 d (8.6)	-
6	6.81 d (8.5)	6.80 d (8.6)	6.79 d (8.6)	6.80 d (8.6)	6.87 d (8.6)	-
1'a	-	_	_	_	3.21 dd (12.6;4.4)	-
1'b	-	_	_	_	3.02 m	-
2'	-	_	_	_	3.02 m	7.62 d (2.4)
3'	5.45 d (4.8)	5.41 d (4.8)	5.23 d (4.8)	4.09 d (4.8)	-	6.99 d (2.4)
4'	6.70 d (4.8)	6.60 d (4.8)	5.47 d (4.8)	6.49 d (4.8)	1.50 s	-
5'	1.49 s	1.48 s	1.51 s	1.49 s	1.39 s	-
1'	-	_	_	_	-	4.85 br d (7.2)
2'	-	_	_	_	-	5.61 tqq (7.2; 1.4)
6'	1.46 s	1.44 s	1.44 s	1.44 s	_	-
3"	6.12 qq (7.4; 1.4)	6.13 qq (7.3; 1.5)	6.16 qq (7.3; 1.5)	6.16 qq (7.3; 1.5)	_	_
4"	1.96 dq (7.4; 1.4)	1.96 dq (7.4; 1.5)	2.00 dq (7.3; 1.5)	2.00 dq (7.3; 1.4)	_	1.74 br s
5"	1.85 sept (1.4)	1.85 sept (1.5)	1.94 sept (1.5)	1.89 sept (1.5)	-	1.70 br s
2'''	-	2.11 s	_	_	-	-
3""	6.03 qq (7.2; 1.4)	_	_	-	_	_
4""	1.98 dq (7.2; 1.4)	_	_	_	_	-
5'''	1.83 sept (1.4)	_	_	_	_	-
-OH	-	_	3.11 br s	2.90 br s	_	-
-OCH ₃	-	_	-	-	3.94 s	4.18 s

Table S1. ¹H NMR data of compounds **1-4** at 500 MHz in $\text{CDCl}_3(\delta \text{ in ppm, mult.}, J \text{ in Hz})$

Table S2. ¹³C NMR data of compounds **1-4** at 125 MHz in CDCl₃ (δ in ppm)

C	Anomalin 1	Isopteryksin 2	Isolaserpitin 3	Laserpitin 4	Meranzin 5	Phellopterin 6
2	159.7	159.9	160.5	159.9	161.0	160.5
3	113.2	113.2	112.6	113.0	113.2	112.8
4	143.1	143.3	143.3	143.3	143.7	139.4
5	129.1	129.1	128.7	129.3	127.1	144.3
6	114.3	114.3	114.6	114.5	107.4	114.5
7	156.7	156.7	156.0	157.0	160.7	150.8
8	107.5	107.0	110.8	107.1	114.3	126.9
9	154.0	154.0	154.4	154.2	153.4	144.8
10	112.4	112.5	112.4	112.3	113.0	107.6
1'	-	-	-	-	22.5	-
2'	77.4	77.1	77.6	78.6	63.0	145.1
3'	70.1	69.8	72.4	71.6	59.3	105.0
4'	60.1	61.0	60.0	63.4	19.1	-
5'	22.5	23.0	25.7	25.6	24.8	-
6'	25.4	24.9	22.6	20.9	-	-
1"	166.2	166.4	167.0	169.1	-	70.4
2"	127.4	127.0	127.2	127.3	-	119.8
3"	138.4	139.8	139.6	139.1	-	139.6
4"	15.5	15.8	15.8	15.8	-	25.8
5"	20.4	20.5	20.6	20.4	-	18.1
1""	166.4	169.8	-	-	-	-
2""	127.0	20.6	-	-	-	-
3""	139.8	-	-	-	-	-
4""	15.7	-	-	-	-	-
5'''	20.3	-	-	-	-	-
-OCH ₃	-	-	-	-	56.2	60.8

Rabtti et al.

Figure S1. ¹H NMR spectrum of the compound 1 (anomalin).

Figure S2. ¹H NMR spectrum of the compound 2 (isopteryxin).

Figure S3. ¹H NMR spectrum of the compound 3 (isolaserpitin).

Figure S4. ¹H NMR spectrum of the compound 4 (laserpitin).

Figure S5. ¹H NMR spectrum of the compound 5 (meranzin).

Figure S6. ¹H NMR spectrum of the compound 6 (meranzin).