
Article 
J. Braz. Chem. Soc., Vol. 22, No. 8, 1446-1451, 2011.
Printed in Brazil - ©2011  Sociedade Brasileira de Química
0103 - 5053  $6.00+0.00A

*e-mail: shahbazikhah@mehr.sharif.ir

Predicting Partition Coefficients of Migrants in Food Simulant/Polymer Systems 
using Adaptive Neuro-Fuzzy Inference System

Parviz Shahbazikhah,*,a Mohammad Asadollahi-Baboli,a Ramin Khaksar,b 
Reza Fareghi Alamdaria and Vali Zare-Shahabadic

aDeepartment of Chemistry and cYoung Researchers Club,  Islamic Azad University, Mahshahr Branch, Mahshahr, Iran

bDepartment of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty 
of Nutrition Science and Food Technology, Shaheed Beheshti University of Medical Sciences, Tehran, Iran

A contaminação de alimentos pela migração de aditivos de baixo peso molecular em alimentos 
processados industrialmente pode ser resultado do contato direto entre a embalagem e o alimento. 
A concentração do aditivo que migra do material da embalagem para o alimento está relacionada 
com as propriedades estruturais do aditivo, bem como com a natureza do material empregado na 
embalagem. O objetivo deste estudo é desenvolver um modelo QSPR pela adaptação do sistema 
de interferência neuro-fuzzy (ANFIS) a fim de predizer o valor do coeficiente de partição K, no 
sistema de estudo, embalagem/alimento. Para tal, foram investigados 44 coeficientes de partição 
em vários sistemas, assim constituídos: 4 de simuladores alimentares, 6 de migrantes alimentares 
e 2 de embalagens. Um conjunto de 6 descritores moleculares, representando várias características 
dos simuladores de alimentos (2 descritores), dos migrantes (3 descritores) e de polímeros (1 
descritor) foi empregado como a série de dados para avaliar esse estudo. Esta série de dados foi 
dividida em três subconjuntos: treinamento, teste e predição. A técnica de modelagem ANFIS 
foi aplicada pela primeira vez neste campo de estudos relacionado com alimento/embalagem. O 
resultado desta modelagem forneceu um RMSE de 0,0006 e o coeficiente de correlação (R2) para 
o ensaio da predição foi de 0,9920.

Food contaminations by migration of low molecular weight additives into foodstuffs can result 
from direct contact between packaging materials and food. The amount of migration is related to 
the structural properties of the additive as well as to the nature of packaging material. The goal 
of this study is to develop a quantitative structure-property relationship (QSPR) model by the 
adaptive neuro-fuzzy inference system (ANFIS) for prediction of the partition coefficient K in food/
packaging system. The partition coefficients of a set of 44 systems consisted of 4 food simulants, 6 
migrants and 2 packaging materials were investigated. A set of 6 molecular descriptors representing 
various structural characteristics of food simulants (2 descriptors), migrants (3 descriptors) and 
polymers (1 descriptor) was used as data set. This data set was divided into three subsets: training, 
test and prediction. ANFIS as a new modeling technique was applied for the first time in this field. 
The final model has a root mean square error (RMSE) of 0.0006 and correlation coefficient (R2) 
for the prediction set of 0.9920.
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Introduction

Continuous efforts in food matrix preservation, 
distribution and marketing are being made worldwide to 
supply consumers with high quality products and foods. 
To avoid food packaging contamination, one should first 
find the source of contamination. Various interactions 

between food and packaging materials can contaminate 
food. Migration of low molecular weight additives from 
packaging materials into foodstuffs can also contaminate 
them.1 Types and levels of solvents and migrating 
monomers from polymers into foods are important factors 
of food contamination. Many research groups have been 
widely studying the food contamination.2-4 Also, the 
migration of low molecular weight compounds from a food 
into polymer has been subject of considerable attention.5 
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The thermodynamic equilibrium (partition) of the 
migration process can be defined as an exchange of mass/
energy between the packaging material and food.6 For 
quality control of food packaging, the partition coefficients 
between polymer packaging and the food matrix should 
be known. Fortunately, quantitative structure-property 
relationships (QSPR) based on computational methods 
have made possible calculating these partition coefficients. 
Indeed, QSPRs represent predictive models derived from 
application of statistical tools correlating chemical property, 
such as partition coefficient, with descriptors representative 
of molecular structure and/or property. The success of 
any QSPR model depends on the accuracy of input data, 
selection of appropriate descriptors and statistical tools.7 
Finally the developed model is subjected to validation 
step. The validation strategies check the reliability of the 
developed model for its possible application on a new 
data set, and confidence of prediction can thus be judged. 
In the current work, we have validated model using three 
techniques: leave-one-out and leave-multiple-out cross 
validation techniques and Y-randomization test.

The objectives of the present paper are twofold: i) to 
explore the structure property relationships of partition 
coefficient of diverse systems and ii) to compare the 
developed ANFIS model with the quadratic model reported 
previously.8

Theory

Adaptive neuro-fuzzy inference system
The proposed neuro-fuzzy model in ANFIS is a 

multilayer neural network-based fuzzy system.9-10 Its 
topology is presented in Figure 1. As shown, the system 
has a total of five layers. In this connectionist structure, 
the input (layer 0) and output (layer 5) nodes represent 
the descriptors and the response, respectively. In the 
hidden layers, there are nodes functioning as membership 
functions (MFs) and rules. This architecture eliminates 
the disadvantage of a normal feed forward multilayer 
network, which is difficult for an observer to understand 
or to modify. ANFIS simulates Takagi-Sugeno-Kang fuzzy 
rule11 of type-3 where the consequent part of the rule is a 
linear combination of input variables and a constant. For a 
Sugeno fuzzy model a common rule set with the fuzzy if 
then rule is as follow:

If x is Ai and y is Ai, then 

fi = pix + qiy + ri for i = 1, 2 (1)

For simplicity, we assume here that the examined 
fuzzy inference system has two inputs x and y and one 

output, although the ANFIS contains five layers as shown 
in Figure 1:

Layer 1. The fuzzy part of ANFIS is mathematically 
incorporated in the form of membership functions (MFs). 
A membership function µAi(x) can be any continuous and 
piecewise differentiable function that transforms the input 
value x into a membership degree, that is to say a value 
between 0 and 1. The most widely applied membership 
functions are the generalized bell (gbell MF) and the 
Gaussian function (equations (2) and (3), respectively) 
which are described by the three parameters, a, b, and c. 
Therefore, layer 1 is the fuzzification layer in which each 
node represents a membership:

 (2)
 

 (3)

As the values of the parameters {ai, bi and ci} change, 
the bell-shaped functions vary accordingly, exhibiting 
various forms of membership functions on linguistic label 
Ai. Parameters in this layer are referred to as premise 
parameters.

Layer 2. Every node in this layer is a fixed node labeled, 
whose output is the product of all the incoming signals:

O2,1 = wi = miA (x) × miB (y) for i = 1, 2 (4)

Every node in this layer computes the multiplication 
of the input values and gives the product as the output. 
The membership values represented by µAi(x) and µBi(y) 
are multiplied in order to find the firing strength of a rule 
where the variables x and y has linguistic values Ai and 
Bi, respectively

Figure 1. Basic ANFIS structure.
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Layer 3. This layer is the normalization layer which 
normalizes the strength of all rules according to equation (5):

 for i = 1, 2 (5)

where wi is the firing strength of the ith rule which is 
computed in layer 2. Node i computes the ratio of the ith 
rule’s firing strength to the sum of all rules’ firing strengths. 
For convenience, outputs of this layer are called normalized 
firing strengths.

Layer 4. Every node in this layer is an adaptive node 
with a node function:

O4,i = w– i fi = w– i (pix + qiy + ri) (6)

where wi is a normalized firing strength from layer 3 and 
{pi, qi, ri} is the parameter set for this node. Parameters in 
this layer are referred to as consequent parameters.

Layer 5. The single node in this layer is a fixed node 
labeled Σ, which computes the overall output as the 
summation of all incoming signals:

 (7)

Thus we have constructed an ANFIS system that is 
functionally equivalent to Sugeno fuzzy model, which was used 
in the present QSPR study due to its transparency and efficiency.

Cross-validation techniques
The consistency and reliability of a method can be 

explored using the cross validation technique.12 Two different 
strategies including leave-one-out (LOO) or leave-multiple-
out (LMO) can be employed. In LOO strategy, by deleting 
each time one object from the training set, a number of 
models are produced. Obviously, the number of models 
produced by the LOO procedure is equal to the number 
of available samples (n), e.g. n = 44. Prediction error sum 
of squares (PRESS) is a standard index to measure the 
accuracy of a modeling method based on the cross-validation 
technique. Based on the PRESS and SSY (sum of squares 
of deviations of the experimental values from their mean) 
statistics, the Q2 can be easily calculated by equation (8):

  (8)

In this sense, a high value for the statistical parameter 
is considered as proof of high predictive ability of the 
model.13 However, several authors suggest that a high value 
of Q2

LOO appears to be necessary but not sufficient.14 For 
this reason, we also used LMO cross validation technique. 
In the case of LMO, M represents a group of randomly 
selected data points which is left out at the beginning and 
would be predicted then by the model developed using the 
remaining data points. So, M molecules are considered as a 
prediction set. The R2

LMO can be calculated by equation (9):

  (9)

This algorithm is shown in Figure 2. It is common 
choosing 10-30% of the total number of molecules to 
leave-out. In the present work, calculation of R2

LMO was 
based on 1000 randomly selections of groups of 8 and 12 
samples. The higher value of Q2

LOO or R2
LMO indicates the 

higher predictive power of the model. 

Methodology

Data set and descriptors

The equilibrium distribution of migrants is affected by 
the partitioning behavior of compounds between polymer 
packaging and the food matrix. Therefore the nature of food 
simulant, polymer and migrant are important to avoid food 
contamination. The data collected by Tehrany et al.8 was used 
to develop a QSPR model using ANFIS method.The total 
data set consists of 44 systems of simulant/polymer/migrant 
together with their partition coefficient (K). The partition 
coefficients (K) were used as dependent variable in our QSPR 

Figure 2. Scheme of leave-multiple-out algorithm used in this study.
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study. As the equilibrium distribution of migrants is dependent 
on the nature of food simulant, polymer and migrant, the data 
set consists of systems including three components: (i) Food 
simulant; (ii) polymer; (iii) migrant. In order to simplify for 
each system a code (I) was defined by the following equation:8

I = 100 × LFood + 10 × LPolymer + LMigrant

where LFood, LPolymer, and LMigrant are levels for food, polymer, 
and migrant components, respectively. These levels are given 
in Table 1 for each compound. Therefore, as an example, a 
system with I = 224 consists of 10% ethanol/PA/IP. 

A set containing six molecular descriptors was used. 
The values of all descriptors are listed in Table 2. As this 
table shows, these descriptors are polymer polarity, food 
simulant polarity, simulant molecular weight, migrant 
molecular weight, migrant LUMO (lowest unoccupied 
molecular orbital) and migrant HLB (hydrophilicity, 
lipophilicity balance).

Model development by ANFIS

To develop ANFIS model the data set was divided into 
three subsets: training, test and prediction. All molecules 
were randomly placed in these sets. The training set 
consisted of 22 molecules used to generate the model. The 
test set containing 11 molecules was employed to take care 
of the overtraining. The prediction set comprised of 11 
molecules was used to evaluate the model. 

The compounds included in each set are specified in 
Table 1. The six simulant/polymer/migrant descriptors 
were used as inputs for development of the ANFIS 
model. The model building involves two stages: structure 
identification and parameter identification. The former is 
related to finding a suitable number of rules and a proper 
partition of the feature space. The latter is concerned 
with the adjustment of system parameters, such as MF 
(membership function) parameters, linear coefficients, and 
so on. It is concluded that by increasing the number of MFs 
per input, the number of rules increases accordingly. For 
the first stage of ANFIS modeling, grid partitioning should 
be used for partitioning the features. The number and type 
of membership functions should be optimized by using 
RMSE as a criterion for the test set. All ANFIS models 
were produced using MATLAB 7.0 Fuzzy Logic Toolbox 
(MATLAB, Mathworks Inc. software, Natick, USA, 2008).

Results and Discussion

Statistical parameters of ANFIS model

Prediction results of the ANFIS model for all data 
sets are shown in Table S1 (available as Supplementary 
Information). The statistical parameters of the resulted 
model are given in Table 3. In this table, the model is also 
compared to the quadratic model previously reported on 
the same data set by Tehrant et al.8 which is as follows:

K = a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5(x1 exp x3) + 
a6(x1x4) + a7(x2x4) + a8(x3x4) + a9x

2
3 + a10x

2
4 + a11x5x6 (10)

where x1 is the polarity of food simulant, x2 is the polarity 
of polymer, x3 is the molecular weight of migrant, x4 is 
LUMO, x5 is the molecular weight of food simulant and 
x6 is the HLB of migrant.

It can be seen that the RMSEprediction value has 
improved from 0.0248 for the quadratic model to 0.0006 
for the ANFIS model. It shows that the ANFIS model is 
(0.248/0.0006 = 41.3) times more precise than the quadratic 
model. In the other words, this nonlinear model is able to 
predict the variances of the partition coefficients. 

Table 1. Compounds and their levelsa

Food simulant Polymer Migrant

(1) Water (1) PET (1) EA

(2) 10% Ethanol (2) PA (2) AA

(3) 3% Acetic Acid (3) AN

(4) 95% Ethanol (4) IP

 (5) MEK

 (6) BA

a PET: Polyethylene terephthalate; PA: Polyamide; EA: Ethyl acetate; 
AA: Acetaldehyde; AN: Acetonitrile; IP: Isopropyl acetate; MEK: Methyl 
ethyl ketone; BA: Butyraldehyde.

Table 2. Physico-chemical properties of food simulant, polymer and migrant

Name a Polarityb MW LUMO 
migrant

HLB 
migrant

PET 9.65 - - -

PA 4.83 - - -

Water 16 18.01 - -

10% Ethanol 15.28 20.82 - -

3% Acetic acid 15.75 19.27 - -

95% Ethanol 9.16 44.66 - -

EA - 88.1 0.1604 5.1

AA - 44.05 0.1511 8.23

AN - 41.05 0.2184 4.78

IP - 102.13 0.1615 4.15

MEK - 72.1 0.146 2.15

BA - 72.1 0.1521 4.59
a Data extracted from Tehrany et al.8   b Hansen polarity: delta / sqr (Mpa)
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The correlation between the experimental and 
calculated values of the partition coefficients is shown 
in Figure 3. The residuals of the calculated values of the 
partition coefficients are plotted against the experimental 
ones in Figure 4. The propagation of the residuals in both 
sides of zero line indicates that no symmetric error exists 
in the proposed QSPR model. 

Evaluation of ANFIS models

The models were also subjected to the test for 
criteria of the validity of the generated model. The cross 
validation techniques such as leave-one-out (LOO-CV) 
and leave-multiple-out (LMO-CV) were used to prove the 
consistency of the model. In particular, the leave-one-out 
(LOO), leave-eight-out (L8O) and leave-twelve-out (L12O) 

procedures were utilized in this work for both the ANFIS 
and quadratic models. The results are shown in Table 4. 
Note that calculations of R2

L8O and R2
L12O were based on 

1000 randomly selections of groups containing eight and 
twelve samples from the original training set. The high 
values of the R2 for LOO, L8O and L12O indicate that the 
proposed model is reliable.

Moreover, to assess the robustness of the ANFIS method 
the Y-randomization test was applied. The dependent 
variable vector K was randomly shuffled and a new QSPR 
model was developed using the original descriptor matrix. 
The new QSPR model is expected to show a low value 
for R2

prediction and Q2
LOO. Several random shuffles of the K 

vector were performed for which the results are shown in 
Table 5. The results tabulated in Table 5 indicate that the 
ANFIS model is not due to a chance correlation or structural 
dependency in the training set.

Conclusions

Quantitative structure property relationships (QSPR) 
were developed for the calculation of K values based on 
molecular descriptors. Our model was based on the six 
molecular descriptors: polarity of food simulant, polarity 
of polymer, molecular weight of migrant, LUMO (lowest 
unoccupied molecular orbital), molecular weight of food 
simulant and HLB (hydrophilicity, lipophilicity balance) 

Table 3. Statistical parameters of MLR (multilinear regression) and 
ANFIS models

Parameters MLRa ANFIS

R2 (training) 0.925 0.998

RMSE (training) 0.0235 0.0005

R2 (test) - 0.995

RMSE (test) - 0.0005

R2 (prediction) 0.904 0.992

RMSE (prediction) 0.0248 0.0006
a the MLR model developed by Tehrany et al.8

Figure 3. Plot of the ANFIS calculated partition coefficient vs. the 
experimental values for the training, test and prediction sets.

Figure 4. Plot of residuals vs. experimental values of partition coefficient 
for the ANFIS model.

Table 4. Statistics using LOO-CV and LMO-CV methods to compare the results of ANFIS method with quadratic method for prediction of distribution 
constants

Method LOO L8O a L12O a

Q2 RMSEp R2 RMSEp R2 RMSEp

ANFIS 0.985 0.0008 0.981 0.0008 0.984 0.0009

Quadratic 0.897 0.0269 0.892 0.0273 0.896 0.0278

aCalculation of R2
LMO was based on 1000 random selections of groups of 8 and 12 samples. Q2 was calculated by equation 8.
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Table 5. R2 and Q2
LOO values after several Y-randomization tests

Interation R2
p Q2

LOO

1 0.15 0.08

2 0.03 0

3 0.05 0.07

4 0.17 0.12

5 0.03 −0.06

6 0.09 0.02

7 0.23 0.11

8 0.07 0.03

9 0 −0.09

10 0.14 0.03

of migrant. Forty four different systems of food/migrant/
packaging were predicted using these descriptors. ANFIS 
as a powerful nonlinear tool was used to develop a model 
between descriptors and K values. We validated our model 
using the cross validation techniques of leave-one-out, 
leave-multiple-out and also Y-randomization test. The 
theoretical values of partition coefficients showed that 
there is a good correlation between the physico-chemical 
and structure of molecule. As final conclusion, ANFIS 
produced substantially better model than the quadratic 
model reported recently.8

Supplementary Information

The experimental and calculated partition coefficients 
for both least square and ANFIS models in this QSAR 
study is available free of charge at http://jbcs.sbq.org.br 
as PDF file.
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