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Três origens diferentes de biodiesel (algodão, mamona e palma) foram adulteradas com 
óleo de soja cru, em concentrações variando de 1 a 40% (m/m). Estas amostras foram analisadas 
por espectrometria de infravermelho médio (MIR) e os seus espectros foram estudados em três 
diferentes faixas espectrais: espectro inteiro (4000-665 cm-1), e nas faixas de 1800-1700 cm-1 e 
1800-1000 cm-1. Para determinar a origem do biodiesel utilizado no sistema adulterado, os dados 
espectrais foram analisados pela ferramenta análise de componentes principais (PCA) e a melhor 
segregação das origens foi obtida para o espectro inteiro (4000-665 cm-1). A variância explicada 
foi de 99%, para os três primeiros componentes. Para quantificar o óleo de soja cru foi aplicada 
a ferramenta mínimos quadrados parciais (PLS). Os melhores resultados foram obtidos para a 
região espectral de 1800-1000 cm-1, com valores de RMSEP (erro médio quadrático de previsão) 
variando de 1,10 a 1,47% (m/m). 

Three different biodiesel sources (cotton, castor and palm) were adulterated with raw soybean 
oil at concentrations ranging from 1-40% (m/m). These samples were analyzed by infrared 
spectrometry (MIR) and their spectra were studied at three different spectral ranges: full spectrum 
(4000-665 cm-1), and the spectral ranges of 1800-1700 cm-1 and 1800-1000 cm-1. To determine 
the source of biodiesel used in the adulterated system, the data were analyzed by PCA (principal 
components analysis) spectral analysis tool and the best segregation of the sources was obtained 
at the range of 4000-665 cm-1. The explained variance was of 99% for the first three components. 
To quantify the raw soybean oil partial least squares (PLS) tool was applied. The best results were 
obtained for the spectral range of 1800-1000 cm-1, with values of RMSEP (root mean square error 
of prediction) varying from 1.10 to 1.47% (m/m).
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Introduction

Biodiesel is usually produced by the transesterification 
of vegetable oil or animal fat with a short alcohol chain in 
the presence of a catalyst.1,2 Since the CO2 released during 
combustion is captured by the oleaginous plant, biodiesel 
represents an important fuel alternative. This contributes 
to the reduction in the emission of CO2, which is the main 
responsible for the greenhouse effect. Combustion of 

biodiesel also reduces particulate material and SOx emission 
when compared to conventional fossil fuel.3

Biodiesel is mainly produced from rapeseed oil in 
Europe and other countries in the world. In Brazil, there is a 
large number of oleaginous plants, which could be used for 
biodiesel production and, because of agroclimatic zoning, 
some of these oleaginous cultures concentrate in specific 
regions. Palm, for example, is more common in the northern 
area while castor is easier to find in the northeast area, and 
soybean culture develops better in the southern and south 
eastern areas. This shows the great potential of Brazil as a 
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world producer and exporter of this commodity. A common 
use of biodiesel is in blends with conventional mineral 
diesel fuel. In Brazil, diesel has been commercialized with 
the addition of 5% volume of biodiesel since January 2010.

One of the biggest problems of the current fuel (gasoline, 
ethanol and biodiesel) scenario in Brazil is adulteration,4 
apart from the tax-evasion involved with this practice. 
Adulteration also results in increasing environmental 
pollution, as well as, in consumer harm, since the product 
does not meet the regular specifications, with potential to 
cause several problems to car engines. In the particular 
case of biodiesel, government subsidy is different when 
compared to other fuels. This type of differentiated subsidy 
can lead to unreal declarations of the biodiesel source and, 
consequently, to tax evasion. Another problem that can 
occur in the process of biodiesel production is the addition 
of raw oil to B100 (pure biodiesel), since the process costs 
are still very significant. Thus, it is imperative to solve or try 
to minimize these problems, by developing methodologies 
which allow both the identification of biodiesels source and 
the determination of its adulteration.

One of the analytical techniques which have been mostly 
used to monitor quality of biodiesel and petrodiesel blends 
is infrared (IR) spectroscopy, due to its many advantages. 
It is non-destructive, very reliable and allows direct and 
fast determination of several properties without sample 
pretreatment.1,5,6 In recent years a number of reports has 
appeared on the use of multivariate analysis applied to near 
infrared spectroscopy (NIR) and Fourier-transform infrared 
spectroscopy (FTIR). By using this approach, Pereira et al.7 

have determined gasoline adulteration; Che Man and 
Setiowat8 have determined fatty acid in palmitolein using 
calibration for partial least squares (PLS), which was 
also applied by Knothe5 to monitor the completion of the 
transesterification reaction of biodiesel. Calibration methods 
based on FTIR, MIR and NIR spectroscopy have also been 
developed for the determination of the methyl ester content 
in biodiesel blends9 and the content of biodiesel in diesel fuel 
blends, taking the presence of raw vegetable oil into account.1 
The application of multivariate models to the analysis of 
biodiesel is valuable because the IR spectra of vegetable oils 
and their corresponding esters are very similar, resulting in 
an overlapping band.10 Nevertheless, this methodology has 
not been able to segregate biodiesel from different sources or 
to quantify the biodiesel adulteration with raw vegetable oil. 
Oliveira et al.11 used FTIR and NIR spectroscopy to design 
calibration models for the determination of the methyl ester 
content in biodiesel blends (methyl ester + diesel).

Other analytical techniques have also been utilized 
for the characterization of biodiesel profile. Monteiro and 
co-workers12 obtained good results by H1 NMR technique 

to determine the biodiesel/diesel proportion using samples 
of soy and castor derived biodiesel mixed with diesel form 
three different batches. Catharino et al.13 fingerprinted 
several origins of biodiesel using electrospray ionization 
mass spectrometry (ESI-MS). Also using ESI-MS, Eide and 
Zahlsen14 fingerprinted biodiesel origins and mixtures of 
diesel, classifying them with multivariate analysis. 

In a previous work,15 the adulteration of biodiesel with 
vegetable oil was determined using FTIR with the accessory 
of attenuated total reflectance (ATR) and PLS calibration, 
with variable selection. However, when this method is 
applied there is a need to optimize the model according to 
each biodiesel origin. In the present work, an even simpler 
alternative is presented, which uses a spectral range where 
there is a high correlation between the IR absorbance and 
the grade of adulterant that can be applied to biodiesel 
produced from any origin. Principal components analysis 
(PCA) was used to classify the biodiesel origin also using 
different spectral ranges. 

Experimental

Samples

Raw soybean oil was purchased from a local market. 
Biodiesel used in the experiments were from companies and/
or Universities, which have already produced them for the 
market or on a bench scale, kindly donated. Castor oil ester was 
supplied by Santa Cruz State University (Bahia State, Brazil), 
palm oil ester by Agropalma Company (Pará State, Brazil), and 
cotton oil ester was obtained from Soyminas (Minas Gerais 
State, Brazil). The samples were produced by classic basic 
transesterification reaction using methylic route.16-18 Samples 
were characterized according to current parameters established 
by the National Agency for Petrol, Natural Gas and Biofuels 
(ANP), Resolution 07/2008.19 The assays were done at the 
Laboratory for Fuel Assays (LEC) of Federal University of 
Minas Gerais (Minas Gerais State, Brazil).

A total of 120 samples were prepared by mixing biodiesel 
from different sources with raw soybean oil in percentages 
varying from 1 to 40% m/m with 1% m/m increments. These 
samples were used as classifying for PCA and calibration 
set. The external validation set comprised other 15 samples 
of each source which were prepared in the same way as the 
calibration set, but the percentage of raw soybean oil added 
was randomly chosen, resulting in 45 samples.

ATR-FTIR analysis

ATR-FTIR spectra were obtained from an ABB 
Bomen IR spectrometer model MB 102 equipped with an 
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ATR sampling accessory with a deuterated triglycerine 
sulfate detector. All spectra were collected at 16 ± 1 ºC 
using an average of 16 scans, with spectral resolution of 
2 cm-1. The background spectra were obtained using a 
clean ATR accessory with an average of 100 scans. After 
recording each spectrum, the cell was cleaned by successive 
treatments with heptane. The average spectra in the range 
4000-665 cm-1 from triplicate analysis were treated 
chemometrically using MINITAB software®, version 14.

Modeling and data analysis

PCA is a well-known tool in multivariate data 
analysis for visualizing information from large data sets. 
PCA relies on the linear transformation of the original 
set of measurements into a substantially smaller set of 
uncorrelated variables while retaining as much information 
present in the original data set as possible.20,21 The original 
data set is substituted by two matrices that contain 
information about the weight of the original variable in the 
PC space (loading matrix) and the scattering of the samples 
in this space (score matrix). Thus, graphical presentation of 
the pair-wise components allows the natural grouping of the 
samples to be observed indicating the similarity between 
samples and allowing different groups of samples to be 
identified. In this work, PCA was employed to verify the 
possibility of classifying samples biodiesel from cotton, 
castor and palm oils, adulterated by different levels of raw 
soybean oil. Since all variables considered in this study 
were within the same scale, PCs were obtained from the 
covariance matrix.

PLS regression is a popular multivariate calibration 
method aiming to assess the degree of relationship 
between a set of x-predictor variables and a set of 
y-outcome variables.1 It has been widely applied to multi-
component spectral analysis, especially in IR, NIR and 
Raman spectroscopy. PLS is a full spectral calibration 
method and has built-in capacity to deal with specific 
problems of full spectrum calibration.22 However, the 
selection of wavelength or wavenumber region is still 
very important.23,24 An important goal is to search for 
informative spectral regions for multicomponent spectral 
analysis. Informative regions mean that they contain useful 
information for building a PLS model and are helpful to 
improve the performance of the model.20

PLS is a powerful approach for the analysis of mixtures 
and was employed to determine the concentration of 
soybean oil in biodiesel, using leave-one-out cross 
validation method. Predictive residual error sum of squares 
(PRESS) is a commonly used criterion for LVs number 
selection.23 For every set of data from each biodiesel source, 

a PLS model with a selected LV number is built, and 
root mean square error of calibration for cross validation 
(RMSECV). Once the external validation is made, the 
root mean square error of prediction (RMSEP) can be 
calculated.

Results and Discussion

Physical-chemical assays

In order to simulate an adulterated system it is 
fundamental to begin with samples that are considered 
within specification, according to Brazilian legislation 
(Resolution 07/2008). Thusly, the physicochemical 
parameters were previously obtained for all the biodiesel 
samples used in this study. The assays were performed 
according to the national and international standards 
(ABNT/ASTM /EN), as presented in Table 1. The specified 
values by the regulatory agency and the results obtained 
of the biodiesel samples from three distinct sources are 
showed in Table 1. The results show that the samples used 
meet the requirements of current legislation. It is note 
worthy that all samples presented grades of ether higher 
than 96.5%, which is considered threshold for it to be 
marketed. 

ATR-FTIR analysis

MIR spectra of castor, palm and cotton biodiesel are very 
similar to that of non-esterified soybean oil (Figure 1), showing 
absorption bands in the regions 3700 to 3000 cm-1, 1900 to 
1500 cm-1 and 1800 to 800 cm-1. Another important feature 
in these spectra comes from the distinctive band at 3333 cm-1 

in the castor oil spectrum, which can be assigned to axial 
stretching vibrations of hydroxyl O–H bond in ricinoleic acid.24 

Bands around 1200 cm-1 may be assigned to the antisymmetric 
axial stretching vibrations of CC(=O)–O, bonds of the ester 
group, while those around 1183 cm-1 may be assigned to 
asymmetric axial stretching of O–C–C bonds. Carbonyl 
absorption of saturated aliphatic esters usually appears from 
1750 to 1735 cm-1, while that for α, β-unsaturated esters from 
1730 to 1715 cm-1. In monomers and dimers of carboxylic 
acids carbonyl absorptions appear on 1760 cm-1 and from 
1720 to 1706 cm-1, respectively.24

Carboxylic acids show in-plane bending of C–O–H bond 
in 1408 cm-1 and axial deformation for dimer C–O bond 
in 1280 cm-1. Carboxylic acid dimer shows an intense and 
broad O–H axial stretching in the region 3300 to 2500 cm-1, 
usually centered in 3000 cm-1.24 This absorption may be 
due to the hydroxyl of ricinoleic acid from castor oil, fatty 
acids, glycerin and mono-and diglycerides. In Figure 1, the 
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hydroxyl absorption is observed only in castor oil biodiesel 
(spectrum b).

The overlapped bands in the fingerprint region 
(1300 to 900 cm-1) indicate that univariate calibration 
models may cause significant prediction error in the 
quantification of biodiesel samples with different 
concentration when raw oil is present. Those models are 
also inadequate for identifying the presence of raw oil in 
a spoiled blend either because of incomplete conversion 
during esterification reaction or the illegal addition of 
raw oil. Zagonel et al.10 also observed overlapped bands 
in the MIR spectra of soybean oil and its corresponding 

ester. These authors used multivariate calibration of the 
bands in the region 1800 to 1700 cm-1, corresponding 
to axial stretching vibrations of carbonyl groups to 
distinguish soybean from its ester.

Classification of biodiesel groups by PCA 

PCA was used in an attempt to evaluate if biodiesel 
from different sources (cotton, castor or palm oil) exhibited 
distinguishing features that could make the identification 
of these sources easier, even though they were spoiled by 
raw soybean oil.

In an attempt to obtain models with a more efficient 
segregation of groups the whole spectrum as well as some 
of its regions was considered. According to literature, 
the best region was assigned to the axial deformation of 
carbonyl group (1800-1700 cm-1). Zagonel et al.10 have 
shown that there is a displacement of carbonyl band of 
biodiesel and the raw oil when a first derivative spectrum 
is obtained in this region. Thus, from literature information 
and visual analysis PCA models were built up considering 
the full spectrum (4000-665 cm-1) and two spectral ranges 
(1800-1700 and 1800-1000 cm-1, encompassing both the 
carbonyl as CC(=O)-O vibrations. These spectral ranges 
were labeled as follows: model 1, 2 and 3, respectively.

Figure 1. MIR infrared spectra of (a) cotton biodiesel, (b) castor biodiesel, 
(c) palm biodiesel and (d) raw soybean oil.

Table 1. Physicochemical assays in the biodiesel samples

Characteristic Unit
Limit 
value

Obtained value
Method

ABNT NBR ASTM D EN/ISO

Aspect - (1)* Cotton, Castor, Palm (Clear for all) -

Specific gravity at 20 º C kg/m³ 850-900* Cotton (860), Castor (878), Palm (859) 4052

Kinematic viscosity at 40 ºC mm²/s 3.0-6.0* Cotton (3.4), Castor (5.2), Palm (3.7) 445

Flash point, min. (2) ºC 100.0* Cotton (131.1), Castor (142.6), Palm (132.3) 93

Ester grade, min mass % 96.5* Cotton (96.8), Castor (97.2), Palm (97.5) EN 14103

Carbon Residual mass % 0.050* Cotton (0.039), Castor (0.041), Palm (0.028) 4530

Sulfated ash, max. mass % 0.020* Cotton (0.015), Castor (0.018), Palm (0.012) 874

Sodium + Potassium, max. mg kg-1 4* Cotton (0.8), Castor (1.02), Palm (1.3) 15553

Calcium + Magnesium, max. mg kg-1 4* Cotton (0.9), Castor (0.7), Palm (0.7) 15553

Phosphorus, max. mg kg-1 10* Cotton (5.6), Castor (6.3), Palm (6.02) 15553

Corrosivity to copper, 3 h at 50 ºC, max. - 1* Cotton (1), Castor (1), Palm (1) 130

Point of clogging, cold filter, max. ºC 19 Cotton (4), Castor (3), Palm (3) 6371

*Established limit according to the Brazilian legislation; (1) Clear and free of impurities with the assays temperature noted; (2) When the analysis of the 
flash point exceeds 130 ºC, the analysis of ethanol and methanol content is discarted.
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The variance explained by the first ten PCs for each 
model is shown in Figure 2. For model 2 and 3, the first 
three principal components captured around 98% of the 
total data while for model 1 the response is 99%. The results 
suggest four independent variation sources, indicating that 
each biodiesel source contributes differently to IR data.

Figure 3 shows a three-dimensional plot of the first 
three principal components for each set of data studied. 
It is possible to distinguish, in each model, three different 
groups of samples (cotton, castor and palm biodiesel). 
This demonstrates unequivocally that segregation between 
samples was very efficient and confirms that the IR data 
really contains enough information to aggregate the samples 
according to its biodiesel source. However, a general trend 
to dispersion among samples belonging to the same group 
can be noticed. Figure 3a shows the smallest dispersion 
for a given group, and the largest distance between each 
group. The best results for classification and identification 
of the biodiesel source were obtained from the full spectrum 
(4000-665 cm-1). The region 1800-1700 cm-1, corresponding 
to carbonyl vibrations, presented a greater dispersion than 
the full spectrum, which also proved to be a good region to 
work with multivariate analysis. According to Figure 3c, 
the data from spectral range 1800-1000 cm-1 shows to be 
inefficient for source separation when the three spectral 
ranges were compared. It demonstrated a close proximity 
between samples from castor and cotton biodiesel.

PLS models

In order to quantify the amount of raw soybean oil added 
to the different biodiesel sources, multivariate calibration 
models were built, using the same MIR spectra employed 
in PCA analysis by PLS. Thus, one model was built: 
for each spectral range studied: model 1 (full spectrum, 
4000-665 cm-1), model 2 (1800-1700 cm-1) and model 3 
(1800-1000 cm-1). 

Table 1 lists the root mean square error of calibration 
for cross validation (RMSECV) of the model, correlation 
coefficient (R), latent variable (LV) and root mean square 
error of prediction (RMSEP) of the PLS model, considering 
all set of samples (cotton, castor and palm biodiesel) and 
different spectral ranges studied. Because of an algorithm 
limitation in the software related to the numbers of variables 
that can be used, the RMSEP values were only calculated 
for model 2 and 3. The maximum numbers of variable is 
1000 for a set of calibration and validation, falling short 
from the 1488 variables needed for the calibration and 
prediction in model 1, precluding the external validation 
and calculation of RMSEP for this spectral range.

According to Table 2, considering both the spectral 
range as the biodiesel source, a slight variation from 0.972 
to 0.999 was observed for the R values. A similar behavior 
was observed for the LV values, which fluctuated between 5 
and 7. While the R and LV values did not varied noticeably 
between the models, the spectral range, 1800-1000 cm-1, 
gave the smallest values of RMSECV for all of the three 
sources of biodiesel.

A better picture of the calibration results can be seen 
in Figure 4, resulting from the models developed for the 
three sources of biodiesel as a function of the predicted 
values for model 3 (1800-1000 cm-1). This spectral range 
was chosen because of the smallest values of RMSECV 
and RMSEP presented. The plot shows only a very small 
dispersion which is comparable to all three sources. Cross 
validated results were quite close to the calculated value, 
if not coincident. These findings strongly support region 
1800-1000 cm-1 as the most reliable to detect adulteration 
of biodiesel by non esterified oil.

One way to observe qualitatively the linearity of a model 
is through the chart of residuals versus concentration of the 
samples. Residuals should be randomly distributed along 

Figure 2. Variance captured for the first principal components.

Figure 3. Principal component analysis for: a) MID full infrared spectrum 
(4000-665 cm-1), b) spectra range 1800-1700 cm-1 and c) spectra range 
1800-1000 cm-1.
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Table 2. PLS calibration results for biodiesel samples mixed with raw soybean oil

Model Range Biodiesel R RMSECV (%, m/m) RMSEP (%, m/m) Variables for each spectral range LV

1 4000-665 cm-1 cotton 0.994 4.34 a 744 7

castor 0.995 1.41 a 6

palm 0.990 2.85 a 6

2 1800-1700 cm-1 cotton 0.982 2.51 2.92 52 5

castor 0.972 2.23 2.36 7

palm 0.973 2.74 3.14 6

3 1800-1000 cm-1 cotton 0.996 1.22 1.47 414 7

castor 0.999 1.02 1.10 7

palm 0.997 1.23 1.39 7

aNumber of columns exceeded the software processing capacity.

Figure 4. PLS calibration model for spectral range 1800-1000 cm-1: 
a) cotton biodiesel, b) castor biodiesel and c) palm biodiesel.

Figure 5. Charts of residuals produced in the PLS model of castor oil 
biodiesel.

the calibration curve. The residuals generated by the models 
were quite similar. Figure 5 shows the graph of residuals for 
biodiesel calibration from castor oil for the spectral range of 
1800-1000 cm-1. As displayed in Figure 5 the residuals are 
distributed randomly, indicating the linearity of the model.

The advantage of this methodology in comparison to 
the previous one15 is the speed and simplicity for building 
the models. The spectral range, 1800-1000 cm-1, generated 
prediction errors comparable to those obtained in the 
previous work4 using the selection of variables with best 
results approach, with RMSEP varying from 1.10 to 1.47% 
(m/m) and from 0.65 to 1.40% (m/m) respectively.

Conclusion

PCA has shown that MIR spectra data contain 
information to differentiate samples of biodiesel, 
according to their source, even if there is some amount of 
raw soybean oil present. This chemometric tool showed 
to be suitable to classify blends of biodiesel/raw soybean 
distinguishing the groups from different sources very 
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well. The best result was obtained when the full MIR 
infrared spectrum was used.

PLS model based on MIR spectra developed in this work 
proved to be suitable as a practical analytical method to predict 
raw soybean content in biodiesel blends from 1 to 40% m/m. 
The spectral range 1800-1000 cm-1, showed to the best region 
to develop a PLS calibration model for quantification of raw 
oil in biodiesel samples giving the lowest values for RMSECV 
and RMSEP. The advantage of using this spectral range to 
build models is that these models can be applied to biodiesel 
of different sources. In contrast, the variable selection method 
must be optimized for each source of biodiesel. 

The advantage of this methodology is that it is very fast 
in determining the origin of the biodiesel, and whether or 
not it is adulterated, if so the level of the adulterant. 
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