Hyphenating the Curtius Rearrangement with Morita-Baylis-Hillman Adducts: Synthesis of Biologically Active Acyloins and Vicinal Aminoalcohols

Giovanni W. Amarante, Mayra Cavallaro and Fernando Coelho*

Laboratório de Síntese de Produtos Naturais e Fármacos, Instituto de Química, Universidade de Campinas, 13083-970 Campinas-SP, Brazil

General

The ¹H and ¹³C spectra were recorded on Bruker at 250 MHz and 62.5 MHz respectively. The ¹H and ¹³C spectra were also recorded on Inova instrument at 500 MHz and 125 MHz, respectively. The high resolution mass spectra were recorded using a Q-TOF Micromass equipment (Waters, UK).

Figure S1. ¹H NMR (CDCl₃, 500 MHz) of MBH adduct 3.

^{*}e-mail: coelho@iqm.unicamp.br

Figure S2. ¹³C NMR (CDCl₃, 125 MHz) of MBH adduct 3.

Figure S4. ¹³C NMR (CDCl₃, 62.5 MHz) of MBH adduct 4.

Figure S5. ¹H NMR (CDCl₃, 250 MHz) of MBH adduct 5.

Figure S6. ¹³C NMR (CDCl₃, 62.5 MHz) of MBH adduct 5.

Figure S8. ¹³C NMR (CDCl₃, 62.5 MHz) of MBH adduct 6.

Figure S9. ¹H RMN (CDCl₃, 250 MHz) of MBH adduct 7.

Figure S10. ¹³C NMR (CDCl₃, 62.5 MHz) of MBH adduct 7.

Figure S11. ¹H NMR (CDCl₃, 250 MHz) of MBH adduct 8.

Figure S12. ¹³C NMR (CDCl₃, 62.5 MHz) of MBH adduct 8.

Figure S13. ¹H NMR (CDCl₃, 250 MHz) of MBH adduct 9.

Figure S14. ¹³C NMR (CDCl₃, 62.5 MHz) of MBH adduct 9.

Figure S15. ¹H NMR (CDCl₃, 250 MHz) of MBH adduct 10.

Figure S16. ¹³C NMR (CDCl₃, 62.5 MHz) of MBH adduct 10.

Figure S17. ¹H NMR (CDCl₃, 250 MHz) of MBH adduct 11.

Figure S18. ¹³C NMR (CDCl₃, 125 MHz) of MBH adduct 11.

Figure S19. ¹H NMR (CDCl₃, 250 MHz) of MBH adduct 12.

Figure S20. ¹³C NMR (CDCl₃, 125 MHz) of MBH adduct 12.

Figure S21. ¹H NMR (CDCl₃, 250 MHz) of silylated MBH adduct 13.

Figure S22. ¹³C RMN (CDCl₃, 62.5 MHz) of silylated MBH adduct 13.

Figure S23. ¹H NMR (CDCl₃, 250 MHz) of silylated MBH adduct 14.

Figure S24. ¹³C NMR (CDCl₃, 62.5 MHz) of silylated MBH adduct 14.

Figure S25. ¹H NMR (CDCl₃, 250 MHz) of silylated MBH adduct 15.

Figure S26. ¹³C NMR (CDCl₃, 62.5 MHz) of silylated MBH adduct 15.

Figure S27.¹H NMR (CDCl₃, 250 MHz) of silylated MBH adduct 16.

Figure S28. ¹³C NMR (CDCl₃, 125 MHz) of silylated MBH adduct 16.

Figure S29. ¹H NMR (CDCl₃, 250 MHz) of silylated MBH adduct 17.

Figure S30. $^{\rm 13}{\rm C}$ NMR (CDCl_3, 62.5 MHz) of silylated MBH adduct 17.

Figure S31. ¹H NMR (CDCl₃, 250 MHz) of silylated MBH adduct 18.

Figure S32. ¹³C NMR (CDCl₃, 62.5 MHz) of silylated MBH adduct 18.

Figure S33. ¹H NMR (CDCl₃, 250 MHz) of silylated MBH adduct 19.

Figure S34. ¹³C NMR (CDCl₃, 62.5 MHz) of silylated MBH adduct 19.

Figure S35. ¹H NMR (CDCl₃, 250 MHz) of silylated MBH adduct 20.

Figure S36. ¹³C NMR (CDCl₃, 62.5 MHz) of silylated MBH adduct 20.

Figure S37. ¹H NMR (CDCl₃, 250 MHz) of silylated MBH adduct 21.

Figure S38. ¹³C NMR (CDCl₃, 62.5 MHz) of silylated MBH adduct 21.

Figure S39. ¹H NMR (CDCl₃, 250 MHz) of silylated MBH adduct 22.

Figure S40. ¹³C NMR (CDCl₃, 62.5 MHz) of silylated MBH adduct 22.

Figure S41. ¹H NMR (CDCl₃, 250 MHz) of silylated acid 23.

Figure S42. ¹³C NMR (CDCl₃, 62.5 MHz) of silylated acid 23.

Figure S43. ¹H NMR (CDCl₃, 250 MHz) of silylated acid 24.

Figure S44. ¹³C NMR (CDCl₃, 62.5 MHz) of silylated acid 24.

Figure S45. ¹H NMR (CDCl₃, 250 MHz) of silylated acid 25.

Figure S46. ¹³C NMR (CDCl₃, 62.5 MHz) of silylated acid 25.

Figure S47. ¹H NMR (CDCl₃, 250 MHz) of silylated acid 26.

Figure S48. ¹³C NMR (CDCl₃, 125 MHz) of silylated acid 26.

Figure S49. ¹H NMR (CDCl₃, 250 MHz) of silylated acid 27.

Figure S50.¹³C NMR (CDCl₃, 62.5 MHz) of silylated acid 27.

Figure S51. ¹H NMR (CDCl₃, 250 MHz) of silylated acid 28.

Figure S52. ¹³C NMR (CDCl₃, 62.5 MHz) of silvated acid 28.

Figure S53. ¹H NMR (CDCl₃, 250 MHz) of silylated acid 29.

Figure S54. ¹³C NMR (CDCl₃, 62.5 MHz) of silylated acid 29.

Figure S55. ¹H NMR (CDCl₃, 250 MHz) of silylated acid 30.

Figure S56. ¹³C NMR (CDCl₃, 62.5 MHz) of silylated acid 30.

Figure S57. ¹H NMR (CDCl₃, 250 MHz) of silylated acid 31.

Figure S58. ¹³C NMR (CDCl₃, 62.5 MHz) of silylated acid 31.

Figure S59. ¹H NMR (CDCl₃, 250 MHz) of silylated acid 32.

Figure S60. ¹³C NMR (CDCl₃, 62.5 MHz) of silylated acid 32.

Figure S61. ¹H NMR (CDCl₃, 250 MHz) of acyloin 33.

Figure S62. ¹³C NMR (CDCl₃, 62.5 MHz) of acyloin 33.

Figure S63. ¹H NMR (CDCl₃, 250 MHz) of acyloin 34.

Figure S64. ¹³C NMR (CDCl₃, 62.5 MHz) of acyloin 34.

Figure S65. ¹H NMR (CDCl₃, 250 MHz) of acyloin 35.

Figure S66. ¹³C NMR (CDCl₃, 125 MHz) of acyloin 35.

Figure S68. ¹³C NMR (CDCl₃, 62.5 MHz) of acyloin 36.

Figure S69. ¹H NMR (CDCl₃, 250 MHz) of acyloin 37.

Figure S70. ¹³C NMR (CDCl₃, 62.5 MHz) of acyloin **37**.

Figure S71. ¹H NMR (CDCl₃, 250 MHz) of acyloin 38.

Figure S72. ¹³C NMR (CDCl₃, 62.5 MHz) of acyloin 38.

Figure S73. ¹H NMR (CDCl₃, 250 MHz) of acyloin 39.

Figure S74. ¹³C NMR (CDCl₃, 62.5 MHz) of acyloin 39.

Figure S76. ¹³C NMR (CDCl₃, 62.5 MHz) of acyloin 40.

Figure S77. ¹H NMR (CDCl₃, 250 MHz) of acyloin 41.

Figure S78.¹³C NMR (CDCl₃, 62.5 MHz) of acyloin 41.

Figure S79. ¹H NMR (CDCl₃, 250 MHz) of acyloin 42.

Figure S80. ¹³C NMR (CDCl₃, 62.5 MHz) of acyloin 41.

Figure S81. ¹H NMR (CDCl₃, 250 MHz) of vicinal aminoalcohol 43.

Figure S82. ¹³C NMR (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 43.

Figure S83. DEPT 135 (CDCl₃, 62.5 MHz) of of vicinal aminoalcohol 43.

Figure S84. ¹H NMR (CDCl₃, 250 MHz) of vicinal aminoalcohol 44.

Figure S85. ¹³C NMR (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 44.

Figure S86. DEPT 135 (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 44.

Figure S87.¹H NMR (CDCl₃, 250 MHz) of vicinal aminoalcohol 45.

Figure S88. ¹³C NMR (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 45.

Figure S89. DEPT 135 (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 45.

Figure S90. ¹H NMR (CDCl₃, 250 MHz) of vicinal aminoalcohol 46.

Figure S91. ¹³C NMR (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 46.

Figure S92. ¹H NMR (CDCl₃, 250 MHz) of vicinal aminoalcohol 47.

Figure S93. ¹³C NMR (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 47.

Figure S94. DEPT 135 (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 47.

Figure S95. ¹H NMR (CDCl₃, 250 MHz) of vicinal aminoalcohol 48.

Figure S96. ¹³C NMR (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 48.

Figure S97. DEPT 135 (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 48.

Figure S98. ¹H NMR (CDCl₃, 250 MHz) of vicinal aminoalchol 49.

Figure S99. ¹³C NMR (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 49.

Figure S100. DEPT 135 (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 49.

Figure S101. ¹H NMR (CDCl₃, 250 MHz) of vicinal aminoalcohol 50.

Figure S102. ¹³C NMR (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 50.

Figure S103. DEPT 135 (CDCl₃, 62.5 MHz) of vicina aminoalcohol 50.

Figure S104. ¹H NMR (CDCl₃, 250 MHz) of vicinal aminoalcohol 51.

Figure S105. ¹³C NMR (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 51.

Figure S106. ¹H NMR (CDCl₃, 250 MHz) of vicinal aminoalcohol 52.

Figure S107. ¹³C NMR (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 52.

Figure S108. ¹H NMR (CDCl₃, 250 MHz) of vicinal aminoalcohol 53.

Figure S109. ¹³C NMR (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 53.

Figure S110. DEPT 135 (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 53.

Figure S111. ¹H NMR (CDCl₃, 250 MHz) of vicinal aminoalcohol 54.

Figure S112. ¹³C NMR (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 54.

Figure S113. ¹H NMR (CDCl₃, 250 MHz) of monosilylated diol 60.

Figure S114. ¹³C NMR (CDCl₃, 75.4 MHz) of monosilylated diol 60.

Figure S115. ¹H NMR (CDCl₃, 250 MHz) of diol 61.

Figure S116. ¹H NMR (CDCl₃ + 2 drops of D_2O , 250 MHz) of diol **61**.

Figure S117. ¹³C NMR (CDCl₃, 62.5 MHz) of diol 61.

Figure S118.¹H NMR (CDCl₃, 250 MHz) of acyloin 59.

Figure S119. ¹³C NMR (CDCl₃, 75.4 MHz) of acyloin 59.

Figure S120. ¹H NMR (CDCl₃, 250 MHz) of bupropion (1).

Figure S121. ¹³C NMR (CDCl₃, 62.5 MHz) of bupropion (1).

Figure S122. ¹H NMR (CDCl₃, 250 MHz) of hexadecanal.

Figure S123. ¹³C NMR (CDCl₃, 62.5 MHz) of hexadecanal.

Figure S124. ¹H NMR (CDCl₃, 250 MHz) of vicinal aminoalcohol 62.

Figure S125. ¹³C NMR (CDCl₃, 62.5 MHz) of vicinal aminoalcohol 62.

Figure S126. ¹H NMR (CDCl₃, 250 MHz) of silylated aminoalcohol 63.

Figure S127. ¹³C NMR (CDCl₃, 62.5 MHz) of silylated aminoalcohol 63.

Figure S128. ¹H NMR (CDCl₃, 250 MHz) of spisulosine (2).

Figure S129. ¹³C NMR (CDCl₃, 62.5 MHz) of spisulosine (2).