51

Chemical Constituents Isolated from the Bark of *Guatteria blepharophylla* (Annonaceae) and their Antiproliferative and Antimicrobial Activities

Emmanoel V. Costa,^{a,b} Francisco de Assis Marques,^a Maria Lúcia B. Pinheiro,^c Raquel M. Braga,^d Camila Delarmelina,^e Marta Cristina T. Duarte,^e Ana Lúcia T. G. Ruiz,^f João Ernesto de Carvalho^f and Beatriz H. L. N. S. Maia^{*,a}

^aDepartamento de Química, Universidade Federal do Paraná, CP 19081, 81531-990 Curitiba-PR, Brazil ^bDepartamento de Química, Universidade Federal de Sergipe, 49100-000 São Cristovão-SE, Brazil ^cDepartamento de Química, Universidade Federal do Amazonas, 69077-000 Manaus-AM, Brazil ^dInstituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP, Brazil ^eDivisão de Microbiologia and ^fDivisão de Farmacologia e Toxicologia, CPQBA, Universidade Estadual de Campinas, CP 6171, 13083-970 Campinas-SP, Brazil

Table S1. Chemical constituents isolated from the bark of Guatteria blepharophylla and the respective morphology and data spectra numbering (Figure S_)

Caryophyllene oxide (1):	Colorless oil. EI-MS <i>m/z</i> 220 [M] ⁺ . ¹ H NMR (S1). ¹³ C NMR (S2).
Lichexanthone (2):	Light yellow needles (CHCl ₃). Mp 189-190 °C. ¹ H NMR (S3). ¹³ C NMR (S4).
Spathulenol (3):	Colorless oil. EI-MS <i>m/z</i> 220 [M] ⁺ . ¹ H NMR (S5). ¹³ C NMR (S6).
Mixture of β -sitosterol (4) and stigmasterol (5):	White needles (Hexane:CH ₂ Cl ₂ 2:1). ¹ H NMR (S7). ¹³ C NMR (S8).
<i>O</i> -methylmoschatoline (6):	Orange needles (CHCl ₃); mp 182-183 °C. ¹ H NMR (S9). ¹³ C NMR (S10).
Lysicamine (7):	Yellow needles (CHCl ₃); mp 186-187 °C. ¹ H NMR (S11). ¹³ C NMR (S12).
Nornuciferine (8):	Brown amorphous solid. ¹ H NMR (S13). ¹³ C NMR (S14).
Liriodenine (9):	Yellow needles (CHCl ₃ :MeOH 2:1); mp 279-280 °C. ¹ H NMR (S15). HSQC (S16). HMBC (S17).
Isocoreximine (10):	Light yellowish prisms (CHCl ₃ :MeOH 2:1); mp 241-242 °C. ¹ H NMR (S18). ¹³ C NMR (S19).
Subsessiline (11):	Orange needles (CHCl ₃ :MeOH 2:1). ¹ H NMR (S20). ¹³ C NMR (S21). HSQC (S22). HMBC (S23).
Isomoschatoline (12):	Blue needles (CHCl ₃ :MeOH 2:1). ¹ H NMR (S24). ¹³ C NMR (S25). HSQC (S26). HMBC (S27).

Figure S1. ¹H NMR spectrum of compound 1 in CDCl₃ at 400 MHz.

Figure S2. ¹³C{¹H} NMR spectrum of compound 1 in CDCl₃ at 100 MHz.

Figure S3. ¹H NMR spectrum of compound 2 in CDCl₃ at 400 MHz.

Figure S4. ¹³C{¹H} NMR spectrum of compound 2 in CDCl₃ at 100 MHz.

Figure S5. ¹H NMR spectrum of compound 3 in CDCl₃ at 400 MHz.

Figure S6. ¹³C{¹H} NMR spectrum of compound 3 in CDCl₃ at 100 MHz.

Figure S7. ¹H NMR spectrum of the mixture of compounds 4 and 5 in CDCl₃ at 200 MHz.

Figure S8. ¹³C{¹H} NMR spectrum of the mixture of compounds 4 and 5 in CDCl₃ at 50 MHz.

Figure S9. ¹H NMR spectrum of compound 6 in CDCl₃ at 400 MHz.

Figure S10. ¹³C{¹H} NMR spectrum of compound 6 in CDCl₃ at 100 MHz.

Figure S11. ¹H NMR spectrum of compound 7 in CDCl₃ at 400 MHz.

Figure S12. ¹³C{¹H} NMR spectrum of compound 7 in CDCl₃ at 100 MHz.

Figure S13. ¹H NMR spectrum of compound 8 in CDCl₃ at 400 MHz.

Figure S14. ¹³C{¹H} NMR spectrum of compound 8 in CDCl₃ at 100 MHz.

Figure S15. ¹H NMR spectrum of compound 9 in CDCl₃ at 400 MHz.

Figure S16. ¹H-¹³C one-bond correlation map from HSQC NMR experiment of compound 9 in CDCl₃ at 400 and 100 MHz.

Figure S17. ¹H-¹³C long-range correlation map from HMBC NMR experiment of compound 9 in CDCl₃ at 400 and 100 MHz.

Figure S18. ¹H NMR spectrum of compound 10 in CDCl₃ + drops of CD₃OD at 400 MHz.

Figure S19. ${}^{13}C{}^{1}H$ NMR spectrum of compound 10 in CDCl₃ + drops of CD₃OD at 100 MHz.

Figure S20. ¹H NMR spectrum of compound 11 in CDCl₃ + drops of CD₃OD at 400 MHz.

Figure S21. ¹³C{¹H} NMR spectrum of compound 11 in CDCl₃ + drops of CD₃OD at 100 MHz.

Figure S22. ¹H-¹³C one-bond correlation map from HSQC NMR experiment of compound 11 in CDCl₃ + drops of CD₃OD at 400 and 100 MHz.

Figure S23. ¹H-¹³C long-range correlation map from HMBC NMR experiment of compound 11 in CDCl₃ + drops of CD₃OD at 400 and 100 MHz.

Figure S24. ¹H NMR spectrum of compound 12 in CD₃OD at 400 MHz.

Figure S25. ¹³C{¹H} NMR spectrum of compound 12 in CD₃OD at 100 MHz.

Figure S26. ¹H-¹³C one-bond correlation map from HSQC NMR experiment of compound 12 in CD₃OD at 400 and 100 MHz.

Figure S27. ¹H-¹³C long-range correlation map from HMBC NMR experiment of compound 12 in CD₃OD at 400 and 100 MHz.