Synthesis of Novel Room Temperature Chiral Ionic Liquids. Application as Reaction Media for the Heck Arylation of Aza-endocyclic Acrylates

Julio C. Pastre,^a Yves Génisson,^{*, b} Nathalie Saffon,^c Jany Dandurand ^d and Carlos R. D. Correia^{*,a}

^aInstituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP, Brazil

^bLaboratoire de Synthèse et Physicochimie des Molécules d'Intérêt Biologique UMR-CNRS 5068, Université Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 9, France

^cSFTCM, FR2599, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

^dLaboratoire de Physique des Polymères, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

Crystal Structure Determination

The structures of two compounds were determined. The selected crystals were mounted on a glass fibber using perfluoropolyether oil and cooled rapidly in a stream of cold N₂. For all the structures data collection were collected at low temperature (213 K for compounds **23a** and 173 K for compounds 23b) and using a graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å). The structure were solved by direct methods (SHELXS-97, G. M. Sheldrick, *Acta Crystallogr.* **1990**, *A46*, 467-473) and all non hydrogen atoms were refined anisotropically using the least-squares method on *F*² (SHELXL-97, Program for Crystal Structure Refinement, G. M. Sheldrick, University of Göttingen **1997**). CCDC 724261 (**23a**) and CCDC 724262 (**23b**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

Selected crystallographic data for compound 23a

*e-mail: genisson@chimie.ups-tlse.fr; roque@iqm.unicamp.br

Selected data for trans-*anti* Pd complex **23a**: $C_{32} H_{44} Br_2 N_4 Pd$, M = 750.93, orthorhombic, space group P2(1)2(1)2(1), a = 8.7609(2) Å, b = 12.0766(3) Å, c = 31.6211(9) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 3345.57(15) Å³, Z = 4, crystal size 0.35 x 0.15 x 0.05 mm³, 32050 reflections collected (6787 independent, $R_{int} = 0.0821$), 383 parameters, $R1 [I > 2\sigma(I)] = 0.0423$, wR2 [all data] = 0.0804, largest diff. peak and hole: 0.422 and -0.392 eÅ⁻³.

Selected crystallographic data for compound 23b

Selected data for cis-*syn* Pd complex **23b**: $C_{33} H_{46} Br_2 C_{12} N_4 Pd$, M = 835.86, orthorhombic, space group P2(1)2(1)2(1), a = 7.7314(8) Å, b = 17.6948(17) Å, c = 27.018(3) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 3696.3(6) Å³, Z = 4, crystal size 0.40 x 0.20 x 0.05 mm³, 33902 reflections collected (9117 independent, $R_{int} = 0.0759$), 447 parameters, R1 [I>2 σ (I)] = 0.0544, wR2 [all data] = 0.1145, largest diff. peak and hole: 0.624 and -0.727 eÅ⁻³.

¹H NMR and ¹³C NMR spectra for compounds 11, 12, 13, 15, 16, 17, 18, 19, 20, 23, 28, 29, 31, 32, 33, 34 and 35

Figura S1. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 11.

Figura S2. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 11.

Figura S3. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 12.

Figura S4. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 12.

Figura S5. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 13.

Figura S6. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 13.

Figura S7. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 15.

Figura S8. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 15.

Figura S9. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 16.

Figura S10. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 16.

Figura S11. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 17.

Figura S12. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 17.

Figura S13. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 18.

Figura S14. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 18.

190 ppm (t1)

Figura S15. ¹H NMR spectrum (300 MHz, CDCl₂) of compound 19.

Figura S16. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 19.

Figura S17. ¹H NMR spectrum (300 MHz, acetone-d₆) of compound 20.

Figura S18. ¹³C NMR spectrum (75 MHz, CD₃OD) of compound 20.

Figura S19. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 23a,b.

Figura S20. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 23a,b.

Figura S21. ¹H NMR spectrum (300 MHz, CD₃OD) of compound 28.

Figura S22. ¹³C NMR spectrum (75 MHz, CD₃OD) of compound 28.

Figura S23. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 29.

Figura S24. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 29.

Figura S25. ¹H NMR spectrum (300 MHz, CD₃OD) of compound 31.

Figura S26. ¹³C NMR spectrum (75 MHz, CD₃OD) of compound 31.

Figura S27. ¹H NMR spectrum (300 MHz, CD₃OD) of compound 32.

Figura S28. ¹³C NMR spectrum (75 MHz, CD₃OD) of compound 32.

Figura S29. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 33.

Figura S30. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 33.

Figura S31. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 34.

Figura S32. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 34.

Figura S33. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 35.

Figura S34. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 35.