Synthesis of New 4-Methyl-2-(4-pyridyl)-1,2,3,4-tetrahydroquinolines as Potent Antifungal Compounds

Leonor Y. Vargas Méndez, a Susana A. Zacchino b and Vladimir V. Kouznetsov*c

aGrupo de Investigaciones Ambientales, Universidad Santo Tomas, A.A. 1076, Bucaramanga, Colombia
bLaboratorio de Farmacognosia, Universidad Nacional del Rosario, Suipacha 531, Rosario, Argentina

‘Laboratorio de Química Orgánica y Biomolecular, Universidad Industrial de Santander, A. A. 678, Bucaramanga, Colombia

Experimental

The melting points (uncorrected) were determined on a Fisher-Johns melting point apparatus. The IR spectra were recorded on a Lumex Infralum FT-02 spectrophotometer in KBr. 1H NMR spectra were recorded on Bruker AM-400 spectrometer. Chemical shifts are reported in ppm (δ) relative to the solvent peak (CHCl₃ in CDCl₃ at 7.24 ppm for protons). Signals are designated as follows: s, singlet; d, doublet; dd, doublet of doublets; ddd, doublet of doublets of doublets; t, triplet; dt, doublet of triplets; td, triplet of doublets; q, quartet; quint., quintet; sext., sextet; m, multiplet; br, broad. On DEPT-135 spectra, the signals of CH₃, CH₂ and CH carbons are shown as positive (+) and negative (−), respectively. Quaternary carbons are not shown. A Hewlett Packard 5890a series II Gas Chromatograph interfaced to an HP 5972 Mass Selective Detector (MSD) with an hp ms Chemstation Data system was used for ms identification at 70 EV using Selective Detector (MSD) with an hp ms Chemstation II Gas Chromatograph interfaced to an HP 5972 Mass Spectrometer. Chemical shifts are reported in ppm (CDCl₃).

General procedure for the preparation of 4-N-aryl-N-[1-(4-pyridyl)buten-3-yl]amines

Grignard protocol

To an Et₂O solution (200 mL) of allyl magnesium bromide, prepared from allyl bromide (36.3 g, 0.30 mol) and magnesium (12.15 g, 0.50 mol), were added slowly aldimines 1-5 (0.10 mol), dissolved in absolute THF (15 mL). The mixture was kept during 4 h at room temperature, and then cooled to 0 °C to treat rapidly with water, and finally with saturated ammonium chloride solution. The organic layer was separated and the aqueous layer was extracted with ether (4×50 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated. The residue was purified by Al₂O₃ column chromatography (eluent - hexanes/ethyl acetate) to give new homoallylamines 6-10.

Barbier protocol

To a mixture of aldimines 1, 4 and 5 (1 mmol) and powder indium (170 mg, 1.5 mmol) in methanol (10 mL) was added allyl bromide (365 mg, 3 mmol). The reaction mixture was stirred vigorously at room temperature until all the indium had dissolved (1 h to 4 h), at which time TLC indicated complete reaction. The reaction mixture was diluted with sat. NH₄Cl and extracted with ethyl acetate. The extract was washed with brine and dried (Na₂SO₄). The product was purified by flash column chromatography on alumina, using hexanes/ethyl acetate as eluent. Physicochemical characteristics of the obtained homoallylamines 6, 9 and 10 were in agreement with those obtained by Grignard method.

4-N-Phenyl-N-[1-(4-pyridyl)buten-3-yl]amine 6

Yellow viscous oil. Yield: 81%. Molecular formula: C₁₅H₁₄N₂. Molecular weight: 224.30 g mol⁻¹. Eluent: petroleum ether/AcOEt, 10:1. IR (KBr) ν max /cm⁻¹: 3287 (ν NH), 1601 (ν C=C). ¹H-NMR (CDCl₃, 400 MHz) δ (ppm): 2.43-2.66 (2H, m, -CH₂), 4.19 (1H, bs, N-H), 4.38 (1H, dd, J 7.9, 5.0 Hz, -CH), 5.18-5.24 (2H, m, =CH), 5.66-5.80 (1H, m, =CH), 6.45 (2H, d, J 8.5 Hz, 2-(6)-H₈), 6.69 (1H, tt, J 7.3 Hz, 4-H₈), 7.10 (2H, td, J 7.7, 1.0 Hz, 3(5)-H₈), 7.31 (2H, dd, J 4.4, 1.6 Hz, 3(5)-H₈), 8.56 (2H, dd, J 5.0, 1.6 Hz, 2-(6)-H₈). ¹³C-NMR (100 MHz) δ (ppm): 42.4, 107.8, 114.8, 120.5, 126.4, 128.3, 130.7, 139.7, 140.8, 141.2, 147.4, 160.0
4-N-(4-Methylphenyl)-N-[1-(4-pyridyl)buten-3-yl]amine 7

White crystals. mp 95-96 °C. Yield: 73%. Molecular formula: C_{16}H_{18}N_{2}. Molecular weight: 238.33 g mol$^{-1}$. Eluent: petroleum ether/AcOEt, 20:1. IR (KBr) ν_{max}/cm$^{-1}$: 3273 (ν_{NH}), 1599 (δ_{NH}). 1H-NMR (CDCl$_3$, 400 MHz) δ (ppm): 2.20 (3H, s, CH$_3$), 2.43-2.64 (2H, m, -CH$_2$), 4.09 (1H, br. s, N-H), 4.34 (1H, dd, J 7.7, 5.0 Hz, -CH), 5.18 (1H, s, CH$_A$=), 5.21 (1H, d, J 7.8 Hz, CH$_B$=), 5.68-5.78 (1H, m, =CH), 6.38 (2H, d, J 8.4 Hz, 2(6)-H$_{Ar}$), 6.91 (2H, d, J 8.0 Hz, 3(5)-H$_{Ar}$), 7.31 (2H, dd, J 4.7, 1.1 Hz, 3(5)-H$_p$), 8.55 (2H, dd, J 4.6, 1.4 Hz, 2(6)-H$_p$). 13C-NMR (100 MHz) δ (ppm): 20.3, 42.4 (-), 56.4 (+), 113.4 (2C, +), 119.0 (-), 121.6 (2C, +), 127.0, 129.6 (2C, +), 133.6 (+), 144.3, 150.0 (2C, +), 152.9. GC: t_R 19.27 min. MS: m/z (%): 238 (M$^+$, 4), 197 (100), 91 (8), 65 (4). Anal. calc. for C$_{16}$H$_{18}$N$_2$: C, 80.63; H, 7.16; N, 12.05. Found: C, 80.51; H, 7.49; N, 12.05.

4-N-(4-Methoxyphenyl)-N-[1-(4-pyridyl)buten-3-yl]amine 8

Yellow viscous oil. Yield: 60%. Molecular formula: C$_{16}$H$_{18}$N$_2$O. Molecular weight: 254.33 g mol$^{-1}$. Eluent: petroleum ether/AcOEt, 20:1. IR (KBr) ν_{max}/cm$^{-1}$: 3273 (ν_{NH}), 1597 (δ_{NH}). 1H-NMR (CDCl$_3$, 400 MHz) δ (ppm): 2.41-2.61 (2H, m, -CH$_2$), 3.68 (3H, s, OCH$_3$), 4.29 (1H, dd, J 8.0, 5.0 Hz, -CH), 5.19 (1H, s, CH$_B$=), 5.20 (1H, d, J 6.0 Hz, CH$_A$=), 5.67-5.77 (1H, m, =CH), 6.40 (2H, d, J 8.9 Hz, 2(6)-H$_{Ar}$), 6.68 (2H, d, J 8.9 Hz, 3(5)-H$_{Ar}$), 7.29 (2H, d, J 6.0 Hz, 3(5)-H$_p$), 8.53 (2H, dd, J 4.5, 1.5 Hz, 2(6)-H$_p$). 13C-NMR (100 MHz) δ (ppm): 24.2, 55.6, 57.0, 114.5 (2C), 114.7 (2C), 119.0, 121.6 (2C), 133.6, 140.8, 149.8 (2C), 152.2, 153.1. GC: t_R 21.32 min. MS: m/z (%): 254 (M$^+$, 5), 213 (100), 198 (4), 169 (7). Anal. calc. for C$_{16}$H$_{18}$N$_2$O: C, 75.56; H, 7.13; N, 11.01. Found: C, 75.29; H, 7.32; N, 11.12.

Figure S1. 1H and 13C NMR spectra of 6.
4-N-(4-Bromophenyl)-N-[1-(4-pyridyl)buten-3-yl]amine \(\text{9}\)

Yellow crystals, mp 81-83 °C. Yield: 53%. Molecular formula: C\(_{15}\)H\(_{15}\)BrN\(_2\). Molecular weight: 303.20 g mol\(^{-1}\). Eluent: petroleum ether/AcOEt, 10:1. IR (KBr) \(\nu_{\text{max}}/\text{cm}^{-1}\): 3275 (\(\nu_{\text{NH}}\)), 1594 (\(\nu_{\text{C=C}}\)) cm\(^{-1}\). \(\delta\) (ppm): 2.42-2.67 (2H, m, -CH\(_2\)), 4.19 (1H, bs, N-H), 4.34 (1H, m, -CH), 5.17-5.23 (2H, m, CH\(_2\)=), 5.63-5.78 (1H, m, =CH), 6.31 (2H, dd, \(J = 8.8, 2.0\) Hz, 2(6)-H\(_{\text{Ar}}\)), 7.16 (2H, dd, \(J = 8.8, 2.0\) Hz, 3(5)-H\(_{\text{Ar}}\)), 7.27 (2H, dd, \(J = 3.9, 1.7\) Hz, 3(5)-H\(_{\text{Py}}\)), 8.55 (2H, dd, \(J = 4.4, 1.6\) Hz, 2(6)-H\(_{\text{Py}}\)). \(\ ^{13}\text{C-NMR}\)
(75 MHz) \(\delta \) (ppm): 42.3, 56.2, 109.7, 115.0 (2C), 119.5, 121.5 (2C), 128.1, 131.9 (2C), 133.2, 145.5, 150.0, 150.1. GC: \(t_R \) 22.15 min. MS: \(m/z \) (%): 302 (M\(^+\) for \(^{79}\)Br, 5), 261 [(M-CH\(_3\))\(^+\), 100]. Anal. calc. for C\(_{15}\)H\(_{15}\)BrN\(_2\): C, 59.42; H, 4.99; N, 9.24. Found: C, 59.75; H, 5.21; N, 9.56.

4-N-(3,5-Dimethylphenyl)-N-[1-(4-pyridyl)buten-3-yl] amine 10

White crystals. Mp 91-92 °C. Yield: 74%. Molecular formula: C\(_{17}\)H\(_{20}\)N\(_2\). Molecular weight: 252.35 g mol\(^{-1}\). Eluent: petroleum ether/AcOEt, 10:1. IR (KBr) \(\nu_{\max }/\text{cm}^{-1} \): 3293 (\(\nu_{\text{NH}} \)), 1603 (\(\nu_{\text{C=CH}} \)). \(^1\)H-NMR (CDCl\(_3\), 400 MHz) \(\delta \) (ppm): 2.15 (6H, s, 3(5)-CH\(_3\)), 2.41-2.62 (2H, m, -CH\(_2\)), 4.07 (1H, bs, N-H), 4.35 (1H, dd, \(J = 7.7, 5.0 \) Hz, -CH), 5.20-5.15 (2H, m, CH\(_2\)=), 5.65-5.76 (1H, m, =CH), 6.08 (2H, s, 2(6)-H\(_{Ar}\)), 6.34 (1H, s, 4-H\(_{Ar}\)), 7.29 (2H, dd, \(J = 1.3, 1.2 \) Hz, 3(5)-H\(_{Ar}\)), 8.54 (2H, dd, \(J = 4.5, 1.5 \) Hz, 2(6)-H\(_{Ar}\)). \(^1\)C-NMR (100 MHz) \(\delta \) (ppm): 21.4 (2C), 42.4, 56.2, 111.3 (2C), 119.0, 119.9, 121.5 (2C), 133.6, 138.8 (2C), 146.8, 150.0 (2C), 152.9. GC: \(t_R \) 19.99 min. MS: \(m/z \) (%): 252 (M\(^+\), 3), 211 (100), 105 (5), 77 (7). Anal. calc. for C\(_{17}\)H\(_{20}\)N\(_2\): C, 80.91; H, 7.99; N, 11.10. Found: C, 81.14; H, 7.70; N, 11.21.

General procedure for the preparation of 4-methyl-2-(4-pyridyl)-1,2,3,4-tetrahydroquinolines

85% (v/v) sulfuric acid (4.0 mL) was added dropwise at 0 °C to the homoallylamines 6-10 (2.0 g) in minimal CH\(_2\)Cl\(_2\) amount, and the resulting mixture was heated at 80-90 °C for 3 h while stirring vigorously. The reaction progress was monitored via TLC. At the end of the reaction the mixture was cooled down to room temperature and concentrated ammonium hydroxide solution was added to pH 10. Four 25 mL extractions with dichloromethane were performed. The organic layers were combined, dried (Na\(_2\)SO\(_4\)) and concentrated. The oily residue was purified by column chromatography over alumina to give new THQ 11-14 and quinoline sulfonic acid 15. The synthesis of THQ 13 was realized using PPA.

4-Methyl-2-(4-pyridyl)-1,2,3,4-tetrahydroquinoline 11

White crystals. mp 88-90 °C. Yield: 84%. Molecular formula: C\(_{15}\)H\(_{16}\)N\(_2\). Molecular weight: 224.30 g mol\(^{-1}\). Eluent: petroleum ether/AcOEt, 5:1. IR (KBr) \(\nu_{\max }/\text{cm}^{-1} \): 3266 (\(\nu_{\text{NH}} \)). \(^1\)H-NMR (CDCl\(_3\), 400 MHz) \(\delta \) (ppm): cis isomer: 1.34 (3H, d, \(J = 6.6 \) Hz, 4-CH\(_3\)), 1.70 (1H, c, \(J = 12.7 \) Hz, 3-Ha), 2.11 (1H, ddd, \(J = 12.9, 4.3, 3.0 \) Hz, 3-He), 3.13 (1H, sp, \(J = 6.0 \) Hz, 4-H), 4.00 (1H, s, NH), 4.47 (1H,

Table S1. Possible fragmentation and principal ions in the MS of homoallylamines 6-10

<table>
<thead>
<tr>
<th>Compound</th>
<th>(m/z) (I/%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>224 (3)</td>
</tr>
<tr>
<td>7</td>
<td>238 (4)</td>
</tr>
<tr>
<td>8</td>
<td>254 (5)</td>
</tr>
<tr>
<td>9</td>
<td>302 (5)</td>
</tr>
<tr>
<td>10</td>
<td>252 (3)</td>
</tr>
</tbody>
</table>

Figure S4. \(^1\)H NMR spectrum of 9.
Figure S5. 1H and 13C NMR spectra of 10.

Figure S6. 1H and 13C NMR spectra of 11.
dd, J 11.3, 2.8 Hz, 2-H), 6.56 (1H, dd, J 7.9, 0.9 Hz, 8-H),
6.74 (1H, td, J 7.4, 0.9 Hz, 6-H), 7.03 (1H, t, J 7.6 Hz, 7-H),
7.18 (1H, d, J 7.7 Hz, 5-H), 7.35 (2H, dd, J 4.7, 1.3 Hz,
3(5)-H\textsubscript{py}), 8.58 (2H, dd, J 4.5, 1.5 Hz, 2(6)-H\textsubscript{py}). 13C-NMR
(100 MHz) δ (ppm): 20.1, 31.1, 41.2, 56.0, 114.4, 118.2,
121.6 (2C), 126.0, 126.9, 127.1, 144.1, 150.2 (2C), 153.4.
GC: t\textsubscript{R} 20.06 min. MS: m/z (%): 224 (M+, 9), 132 (100),
117 (28), 93 (29), 77 (5). t\textsubscript{R} 20.29 min. 224 (M+, 91), 209 (46),
146 (100), 130 (24), 117 (15), 104 (7), 91 (11), 77 (14), 51 (6). Anal. calc. for C\textsubscript{15}H\textsubscript{16}N\textsubscript{2}:
C, 80.32; H, 7.19; N, 12.49. Found: C, 80.34; H, 7.23; N, 12.51.

4,6-Dimethyl-2-(4-pyridyl)-1,2,3,4-tetrahydroquinoline 12
White crystals. mp 138-139\textdegree C. Yield: 72%. Molecular
formula: C\textsubscript{16}H\textsubscript{18}N\textsubscript{2}. Molecular weight: 238.33 g mol-1.
Eluent: petroleum eter/AcOEt, 5:1. IR (KBr) ν\textsubscript{max}/cm-1:
3273 (ν\textsubscript{NH}) cm-1. 1H-NMR (CDCl\textsubscript{3}, 400 MHz) δ (ppm):
cis Isomer: 1.34 (3H, d, J 6.8 Hz, 4-CH\textsubscript{3}), 1.69 (1H, c, J 11.6
Hz, 3-Ha), 2.10 (1H, ddd, J 12.9, 5.3, 2.1 Hz, 3-He), 2.26
(3H, s, 6-CH\textsubscript{3}), 3.12 (1H, sp, J 6.6 Hz, 4-H), 3.86 (1H, bs,
NH), 4.43 (1H, dd, J 11.3, 2.6 Hz, 2-H), 6.50 (1H, d, J 8.0
Hz, 8-H), 6.86 (1H, d, J 8.0 Hz, 7-H), 7.00 (1H, s, 5-H), 7.35
(2H, dd, J 4.5, 1.4 Hz, 3(5)-H\textsubscript{py}), 8.58 (2H, dd, J 4.4, 1.6 Hz,
2(6)-H\textsubscript{py}). 13C-NMR (100 MHz) δ (ppm): 20.2, 20.6, 31.1,
41.4, 56.1, 114.6, 121.6 (2C), 126.0, 127.3, 127.5, 127.6,
141.7, 150.1 (2C), 153.5. GC: t\textsubscript{R} 20.78 min. MS: m/z (%):
238 (M+, 10), 146 (100), 131 (26), 93 (25), t\textsubscript{R} 21.84 min. 238
(M+, 100), 223 (44), 160 (83), 144 (20), 130 (12), 115 (8),
91 (8), 51 (6). Anal. calc. for C\textsubscript{16}H\textsubscript{16}N\textsubscript{2}: C, 80.63; H, 7.61;
N, 11.75. Found: C, 80.33; H, 7.57; N, 12.02.

4-Methyl-6-methoxy-2-(4-pyridyl)-1,2,3,4-tetrahydroquinoline 13
Yellow crystals. mp 113-115\textdegree C. Yield: 54%. Molecular
formula: C\textsubscript{15}H\textsubscript{16}N\textsubscript{2}O. Molecular weight: 254.33 g mol-1.
Eluent: petroleum eter/AcOEt, 1:1. IR (KBr) ν\textsubscript{max}/cm-1:
3267 (ν\textsubscript{NH}). 1H-NMR (CDCl\textsubscript{3}, 300 MHz) δ (ppm):
cis Isomer: 1.33 (3H, d, J 6.8 Hz, 4-CH\textsubscript{3}), 1.69 (1H, c, J 11.6
Hz, 3-Ha), 2.11 (1H, ddd, J 13.0, 5.5, 2.7 Hz, 3-He),
3.13 (1H, sp, J 6.3 Hz, 4-H), 3.76 (3H, s OCH\textsubscript{3}), 4.40 (1H,
 dd, J 11.2, 2.3 Hz, 2-H), 6.56 (1H, d, J 8.6 Hz, 8-H), 6.65
(1H, dd, J 8.6, 2.8 Hz, 7-H), 6.79 (1H, d, J 2.7 Hz, 5-H),
7.36 (2H, dd, J 4.6, 1.6 Hz, 3(5)-H\textsubscript{py}), 8.58 (2H, dd, J 4.6,
1.6 Hz, 2(6)-H\textsubscript{py}). 13C-NMR (75 MHz) δ (ppm): 20.3, 31.3,
41.3, 55.8, 56.2, 112.6, 113.1, 115.4, 121.7 (2C), 127.4,
138.2, 150.0 (2C), 152.5, 153.5. GC: t\textsubscript{R} 22.74 min. MS:

Figure S7. 1H and 13C NMR spectra of 12.
Figure S8. 1H and 13C NMR spectra of 13.

m/z (%): 254 (M$^+$, 100), 239 (60), 176 (61), 93 (5). Anal. calc. for C$_{16}$H$_{18}$N$_2$O: C, 75.56; H, 7.13; N, 11.01. Found: C, 75.44; H, 7.08; N, 11.15.

6-Bromo-4-methyl-(4-pyridyl)-1,2,3,4-tetrahydroquinoline 14

Yellow crystals. mp 104-106 °C. Yield: 68%. Molecular formula: C$_{15}$H$_{15}$BrN$_2$. Molecular weight: 303.20 g mol$^{-1}$. Eluent: AcOEt. IR (KBr) v_{max}/cm$^{-1}$: 3256 (ν_{NH}). 1H-NMR (1H$_2$O, 300 MHz) δ (ppm): cis Isomer: 1.33 (3H, d, J 6.8 Hz, 4-CH$_3$), 1.67 (1H, c, J 11.5 Hz, 3-Ha), 2.09 (1H, bt, J 13.1 Hz, 3-He), 3.10 (1H, sp, J 6.4 Hz, 4-H), 4.05 (1H, bs, N-H), 4.46 (1H, dd, J 11.2, 2.9 Hz, 2-H), 6.45 (1H, d, J 8.5 Hz, 8-H), 7.11 (1H, dd, J 8.5, 2.3 Hz, 7-H), 7.27 (1H, d, J 2.2 Hz, 5-H), 7.34 (2H, dd, J 4.4, 1.6 Hz, 3(5)-H$_p$), 8.59 (2H, dd, J 4.5, 1.6 Hz, 2(6)-H$_p$). 13C-NMR (75 MHz) δ (ppm): 19.8, 31.0, 40.6, 55.9, 109.8, 115.9, 121.5 (2C), 128.0, 129.6, 129.7, 143.1, 150.1 (2C), 152.9. GC: t_R 23.30 min. MS: m/z (%): 302 (M$^+$ for 79Br, 100), 287 (19), 224 (80), 208 (48), 145 (39), 130 (87). t_R 24.05 min. 302 (M$^+$ for 79Br, 100), 287 (13), 224 (74), 208 (47), 145 (24), 130 (68). Anal. calc. for C$_{15}$H$_{15}$BrN$_2$: C, 59.42; H, 4.99; N, 9.24. Found: C, 59.23; H, 5.16; N, 9.33.

Acid 4,5,7-trimethyl-2-(4-pyridyl)quinoline-8-sulfonic 15

Green crystals. mp 239-240 °C. Yield: 56%. Molecular formula: C$_{17}$H$_{16}$N$_2$O$_3$S. Molecular weight: 328.39 g mol$^{-1}$. Eluent: AcOEt/MeOH, 20:1. IR (KBr) v_{max}/cm$^{-1}$: 1265, 1180 ($\nu_{S=O}$), 710 (ν_{S-O}). 1H-NMR (DMSO-d$_6$, 400 MHz) δ (ppm): 2.39 (3H, s, 5-CH$_3$), 2.75 (3H, s, 4-CH$_3$), 2.83 (3H, s, 7-CH$_3$), 7.17 (1H, s, 5-H), 7.59 (1H, s, 3-H), 7.93 (2H, dd, J 5.2, 1.2 Hz, 3(5)-H$_p$), 8.69 (2H, dd, J 6.0, 1.0 Hz, 2(6)-H$_p$), 9.17 (1H, bs, O-H). 13C-NMR (100 MHz) δ (ppm): 15.4, 20.5, 24.8, 123.8 (2C), 126.9, 127.5, 130.3, 132.3, 134.0, 135.3, 144.3, 145.7, 146.1, 147.5, 149.3 (2C). GC: t_R 26.06 min. MS: m/z (%): 328 (M$^+$, 100), 235 (52), 221 (12), 158 (15), 128 (7), 115 (13). Anal. calc. for C$_{17}$H$_{16}$N$_2$O$_3$S: C, 62.18; H, 4.91; N, 8.53. Found: C, 62.25; H, 4.77; N, 8.37.
Figure S9. 1H and 13C NMR spectra of 14.

Figure S10. 1H and 13C NMR spectra of 15.