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Quatro conjuntos de dados de QSAR e QSPR foram selecionados da literatura e os modelos 
de regressão foram construídos com 75, 56, 50 e 15 amostras no conjunto de treinamento. Estes 
modelos foram validados por meio de validação cruzada excluindo uma amostra de cada vez, 
validação cruzada excluindo N amostras de cada vez (LNO), validação externa, randomização do 
vetor y e validação bootstrap. Os resultados das validações mostraram que o tamanho do conjunto 
de treinamento é o fator principal para o bom desempenho de um modelo, uma vez que este piora 
para os conjuntos de dados pequenos. Modelos oriundos de conjuntos de dados muito pequenos 
não podem ser testados em toda a sua extensão. Além disto, eles podem falhar e apresentar 
comportamento atípico em alguns dos testes de validação (como, por exemplo, correlações espúrias, 
falta de robustez na reamostragem e na validação cruzada), mesmo tendo apresentado um bom 
desempenho na validação cruzada excluindo uma amostra, no ajuste e até na validação externa. 
Uma maneira simples de determinar o valor crítico de N em LNO foi introduzida, usando o valor 
limite de 0,1 para oscilações em Q2 (faixa de variações em único LNO e dois desvios padrões 
em LNO múltiplo). Foi mostrado que 10 - 25 ciclos de randomização de y ou de bootstrapping 
são suficientes para uma validação típica. O uso do método bootstrap baseado na análise de 
agrupamentos por métodos hierárquicos fornece resultados mais confiáveis e razoáveis do que 
aqueles baseados somente na randomização do conjunto de dados completo. A qualidade de dados 
em termos de significância estatística das relações descritor - y é o segundo fator mais importante 
para o desempenho do modelo. Uma seleção de variáveis em que as relações insignificantes não 
foram eliminadas pode conduzir a situações nas quais elas não serão detectadas durante o processo 
de validação do modelo, especialmente quando o conjunto de dados for grande.

Four quantitative structure-activity relationships (QSAR) and quantitative structure-property 
relationship (QSPR) data sets were selected from the literature and used to build regression 
models with 75, 56, 50 and 15 training samples. The models were validated by leave-one-out 
crossvalidation, leave-N-out crossvalidation (LNO), external validation, y-randomization and 
bootstrapping. Validations have shown that the size of the training sets is the crucial factor in 
determining model performance, which deteriorates as the data set becomes smaller. Models 
from very small data sets suffer from the impossibility of being thoroughly validated, failure and 
atypical behavior in certain validations (chance correlation, lack of robustness to resampling and 
LNO), regardless of their good performance in leave-one-out crossvalidation, fitting and even in 
external validation. A simple determination of the critical N in LNO has been introduced by using 
the limit of 0.1 for oscillations in Q2, quantified as the variation range in single LNO and two 
standard deviations in multiple LNO. It has been demonstrated that it is sufficient to perform 10 - 25 
y-randomization and bootstrap runs for a typical model validation. The bootstrap schemes based 
on hierarchical cluster analysis give more reliable and reasonable results than bootstraps relying 
only on randomization of the complete data set. Data quality in terms of statistical significance of 
descriptor - y relationships is the second important factor for model performance. Variable selection 
that does not eliminate insignificant descriptor - y relationships may lead to situations in which 
they are not detected during model validation, especially when dealing with large data sets.

Keywords: leave-one-out crossvalidation, leave-N-out crossvalidation, y-randomization, 
external validation, bootstrapping
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Introduction

Multivariate regression models in chemistry and other 
sciences quantitatively relate a response (dependent) 
variable y to a block of predictor variables X, in the form of a 
mathematical equation y = f(X), where the predictors can be 
determined experimentally or computationally. Among the 
best known of such quantitative-X-y relationships (QXYR) 
are quantitative structure-activity relationships (QSAR)1-3 
and quantitative structure-property relationships (QSPR),4,5 
in which y is a biological response (QSAR) or physical 
or chemical property (QSPR), and any of the predictors, 
designated as descriptors, may account for a microscopic 
(i.e., determined by molecular structure) or a macroscopic 
property. QSAR has become important in medicinal 
chemistry, pharmacy, toxicology and environmental science 
because it deals with bioactive substances such as drugs and 
toxicants. QSPR has become popular in various branches 
of chemistry (physical, organic, medicinal, analytical 
etc.) and materials science. There are many other types 
of QXYR, some of which represent variants of or are 
closely related to QSAR or QSPR. It is worth mentioning 
quantitative structure-retention relationship (QSRR),6 
adsorption-distribution-metabolism-excretion-toxicity 
(ADMET) relationship,7 quantitative composition-activity 
relationship (QCAR),8 linear free energy relationship 
(LFER),9 linear solvent energy relationship (LSER)10 and 
quantitative structure-correlations in structural science.11,12 
QXYR are also found in cheminformatics,13 for example, 
using z-scales or scores of amino-acids or nucleotides as 
molecular descriptors,14,15 and in bioinformatics where the 
primary sequence of nucleic acids, peptides and proteins 
is frequently understood as the molecular structure for 
generation of independent variables.16-18 Other QXYR deal 
with relationships among various molecular features19 and 
parameters of intermolecular interactions20 in computational 
and quantum chemistry, and correlate various chemical and 
physical properties of chemicals in chemical technology.21,22 
In this work, all types of QXYR will be termed as QSAR 
and QSPR rather than molecular chemometrics23 because 
X can be a block of macroscopic properties which are not 
calculated from molecular structure.

Continuous progress of science and technology24 is 
the generator for a vast diversity of QSAR and QSPR 
approaches via new mathematical theories, computational 
algorithms and procedures, and advances in computer 
technology, where chemometrics is the discipline for 
merging all these elements. Health problems, search for 
new materials, and environmental and climate changes give 
rise to new tasks for QSAR and QSPR, as can be noted 
in the literature. Mathematical methodologies employed 

in QSAR and QSPR cover a wide range, from traditional 
regression methods25-28 such as multiple linear regression 
(MLR), principal component regression (PCR) and partial 
least squares (PLS) regression to more diverse approaches 
of machine learning methods such as neural networks29,30 
and support vector machines.31 Modern computer programs 
are capable of generating hundreds and even thousands 
of descriptors for X and, in specific kinds of problems 
even variables for y, in a very easy and fast way. Time for 
and costs of testing chemicals in bioassays, and several 
difficulties in physical and chemical experiments are the 
reasons for more and more variables being computed instead 
of being measured. Regression models y = f(X) are obtained 
from these descriptors with the purpose of comprehensive 
prediction of values of y. Finally, the statistical reliability 
of the models is numerically and graphically tested32-34 in 
various procedures called by the common name of model 
validation,35-38 accompanied by other relevant verifications 
and model interpretation.3-5,39

Even though the terms validation and to validate are 
frequent in chemometric articles, these words are rarely 
explained.40 Among detailed definitions of validation in 
chemometric textbooks, of special interest is that discussed 
by Smilde et al.,32 who pointed out that validation includes 
theoretical appropriateness, computational correctness, 
statistical reliability and explanatory validity. According 
to Brereton,41 to validate is equivalent to “to answer 
several questions” on a model’s performance, and for 
Massart et al.,42 to validate a model means “to verify 
that the model selected is the correct one”, “to check the 
assumptions” on which the model has to be based, and “to 
meet defined standards of quality”. Validation for Snee43 
is a set of “methods to determine the validity of regression 
models.”

The purpose of this work is to present, discuss and 
give some practical variants of five validation procedures 
which are still not-so-commonly used44 in QSAR and 
QSPR works: leave-one-out crossvalidation, leave-N-out 
crossvalidation, y-randomization, bootstrapping (least 
known among the five) and external validation.23,38,40,44-46 
This statistical validation is the minimum recommended 
as standard in QSAR and QSPR studies for ensuring 
reliability, quality and effectiveness of the regression 
models for practical purposes. Unlike instrumental data 
generated by a spectrometer, where a huge set of predictors 
of the same nature (intensities, in general of the same order 
of magnitude) are highly correlated among themselves 
and to the dependent variable (analyte concentration) via 
a known physical law (Beer’s law), QSAR and QSPR 
data are more complex and obscure. In QSAR and QSPR 
studies, the descriptors are of different natures and orders 
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of magnitude and, therefore careful variable selection and 
rigorous model validation are crucial.

Five Basic Validation Procedures

The basic statistical parameters, such as root mean 
square errors (standard deviations), “squared form” 
correlation coefficients which are regularly used in 
QSAR and QSPR, and the respective Pearson correlation 
coefficients that can be also found in several studies, are 
described in detail in Table 1.

The purpose of validation is to provide a statistically 
reliable model with selected descriptors as a consequence 
of the cause-effect and not only of pure numerical 
relationship obtained by chance. Since statistics can never 
replace chemistry, non-statistical validations (chemical 
validations5) such as verification of the model in terms 
of the known mechanism of action or other chemical 
knowledge, are also necessary. This step becomes crucial 
for those cases where no mechanism of action is known 
and also for small and problematic data sets, when some 
statistical tests are not applicable but the mechanism of 
action of compounds is well known so that the selected 
descriptors may be justified a priori.

Requirements for the structure of data sets

Statistical validation of the final model should start 
with all samples in random order and a ready and “clean” 
data set, i.e., where variable selection has been already 
performed and outliers removed. Randomness is important 
since a user-defined samples’ order frequently affects the 
validation, because regularly increasing or decreasing 
values of variables may be correlated to the position of 
samples within the set or its blocks (subsets). The structure 
of such data sets can be characterized by their size, data 
set split, statistical distribution of all descriptors and the 
dependent variable, and structural diversity of samples.

From the statistical point of view, small data sets, i.e. 
data sets with a small number of samples, may suffer 
from various deficiencies like chance correlation, poor 
regression statistics and inadequacy for carrying out various 
statistical tests as well as unwanted behavior in performed 
tests. Any of those may lead to false conclusions in model 
interpretation and to spurious proposals for the mechanism 
of action of the studied compounds. Working with small 
data sets is delicate and even questionable, and it should 
be avoided whenever possible. 

The number of predictor variables (descriptors) also 
defines the data size. It is generally accepted that there must 
be at least five samples per descriptor (Topliss ratio) for a 

simple method as MLR.38,44 However, PCR and PLS allow 
using more descriptors, but too many descriptors may cause 
difficulties in model interpretability. Besides, using several 
factors (principal components or latent variables) can make 
model interpretation tedious and lead to a problem similar 
to that just mentioned about MLR (using too many factors 
means low compression of original descriptors).

Data set split is another very important item which 
strongly depends on the size of the whole set and the nature 
and aim of the study. In an ideal case, the complete data 
set is split into a training (learning) set used for building 
the model, and an external validation set (also called test 
or prediction set) which is employed to test the predictive 
power of the model. The external validation set should be 
distinguished from a data set additionally created only to 
make predictions. This data set, which is sometimes also 
called prediction set, is blind with respect to eventual 
absence of dependent variable and has never participated 
in any modeling step, including variable selection and 
outlier detection. In cases of small data sets and for special 
purposes, it is necessary to build first the model with all 
samples and, a posteriori, construct an analogous one 
based on the split data. In this article, the former and latter 
models are denominated as the real and auxiliary models, 
respectively. The aim of the auxiliary model is to carry 
out validations that are not applicable for the real model 
(external validation and bootstrapping). Since the auxiliary 
model has fewer samples than the real, it is expected that 
its statistics should be improved if the validations were 
performed on the real model.

It is expected that variables in QSAR and QSPR 
models follow some defined statistical distribution, most 
commonly the normal distribution. Moreover, descriptors 
and the dependent variable should cover sufficiently wide 
ranges of values, the size of which strongly depends on 
the nature of the study. From our experience, biological 
activities expressed as molar concentrations should vary 
at least two orders of magnitude. Statistical distribution 
profile of dependent and independent variables can easily 
be observed in simple histograms which are powerful tools 
for detection of badly constructed data sets. Examples 
include histograms with too large gaps, poorly populated 
or even empty regions, as well as highly populated narrow 
intervals. Such scenarios are an indication that the studied 
compounds, in terms of molecular structures, were not 
sufficiently diverse, i.e., on the one hand, one or more 
groups of compounds are characterized by small structural 
differences and on the other hand, there are structurally 
specific and unique molecules. A special case of such a 
molecular set is a degenerate (redundant in samples) set,37 
containing several enantiomers, close structural isomers 
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and very similar molecules. These samples will probably 
have very similar or equal values of molecular descriptors 
and of the dependent variable, which can contribute to 
poor model performance in some validation procedures. 
This is the reason why degenerate samples should be 
avoided whenever possible. Furthermore, a data set may 

contain descriptors that have only a few distinct numerical 
values (two or three), which is not always a consequence 
of degenerate samples. These descriptors behave as 
qualitative variables and should be also avoided, to reduce 
data degeneracy (variable redundancy). For this purpose, 
two cases should be distinguished. The first is of so-called 

Table 1. Basic statistical parameters for regression models in QSAR and QSPR

Parameter Definitiona

Number of samples (training set or external validation set) M

Number of factors (LVs or PCs) or original descriptors k

Root mean square error of crossvalidation (training set)

Root mean square error of calibration (training set)

Root mean square error of prediction (external validation set)

Crossvalidated correlation coefficient b (training set)

Correlation coefficient of multiple determinationc (training set)

Correlation coefficient of multiple determinationc (external validation set)

Correlation coefficient of external validationd,e (external validation set)

Pearson correlation coefficient of validation (training set)

Pearson correlation coefficient of calibration (training set)

 

Pearson correlation coefficient of prediction (external validation set)

aBasic definitions: i - the summation index and also the index of the i-th sample; y
e
 - experimental values of y; y

c
 - calculated values of y, i.e., values from 

calibration; y
p
 - predicted values of y, i.e., values from the external validation set; y

v
 - calculated values of y from an internal validation (LOO, LNO or 

y-randomization) or bootstrapping; <y
e
>, <y

c
> and <y

v
> - average value of y

e
, y

c
 and y

v
, respectively. 

bAlso known as (LOO or LNO) crossvalidated correlation coefficient, explained variance in prediction, (LOO or LNO) crossvalidated explained variance, 
and explained variance by LOO or by LNO. The attributes LOO and LNO are frequently omitted in names for this correlation coefficient.
cAlso known as coefficient of multiple determination, multiple correlation coefficient and explained variance in fitting.
dAlso known as external explained variance.
eThe value w = <y

e
> is the average for experimental values of y calculated for the training set and not for the external validation set.
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indicator variables,47,48 which, by their definition, possess 
only a few distinct values. The very few values of indicator 
variables should have approximately equal frequency; this 
way, model validation should always yield reasonable 
results. The second accounts for other types of descriptors, 
which, according to their meaning, should contain several 
distinct numerical values (integers or real numbers), but 
because of problem definition, computational difficulties, 
lack of sufficient experimental data, etc., become highly 
degenerate. When this occurs, one should replace these 
descriptors by others, or even consider redefining the 
problem under study.

Leave-one-out crossvalidation

Leave-one-out (LOO) crossvalidation is one of the 
simplest procedures and a cornerstone for model validation. 
It consists of excluding each sample once, constructing 
a new model without this sample (new factors or latent 
variables are defined), and predicting the value of its 
dependent variable, y

c
. Therefore, for a training set of M 

samples, LOO is carried out M times for one, two, three, 
etc. factors in the model, resulting in M predicted values for 
each number of factors. The residuals, y

c
 - y

e
 (differences 

between experimental and estimated values from the 
model) are used to calculate the root mean square error of 
crossvalidation (RMSECV) and the correlation coefficient 
of leave-one-out crossvalidation (Q2), as indicated in  
Table 1. 

The prediction statistics of the final model are expressed 
by the root mean square error of calibration (RMSEC) 
and the correlation coefficient of multiple determination 
(R2), calculated for the training set. Since LOO represents 
certain perturbations to the model and data size reduction, 
the corresponding statistics are always characterized by the 
relations R2 > Q2 and RMSEC < RMSECV. The minimum 
acceptable statistics for regression models in QSAR and 
QSPR include conditions Q2 > 0.5 and R2 > 0.6.44,49 A large 
difference between R2 and Q2, exceeding 0.2 - 0.3, is a clear 
indication that the model suffers from overfitting.38,46

Leave-N-out crossvalidation

Leave-N-out (LNO) crossvalidation,45,50,51 known also 
as leave-many-out, is highly recommended to test the 
robustness of a model. The training set of M samples is 
divided into consecutive blocks of N samples, where the 
first N define the first block, the following N samples is the 
second block, and so on. This way, the number of blocks is 
the integer of the ratio M/N if M is a multiple of N; otherwise 
the left out samples usually make the last block. This test 

is based on the same basic principles as LOO: each block 
is excluded once, a new model is built without it, and the 
values of the dependent variable are predicted for the block 
in question. LNO is performed for N = 2, 3, etc., and the 
leave-N-out crossvalidated correlation coefficients Q2

LNO
 

are calculated in the same way as for LOO (Table 1). LNO 
can be performed in two modes: keeping the same number 
of factors for each value of N (determined by LOO for 
the real model) or with the optimum number of factors 
determined by each model.

Contrary to LOO, LNO is sensitive to the order of 
samples in the data set. For example, leave-two-out 
crossvalidation for even M means that M/2 models are 
obtained, but this is only a small fraction (0.5·(M – 1 )–1) 
of all possible combinations of two samples M!/(M – 2)! = 
M(M – 1). To avoid any systematic variation of descriptors 
through a data set or some subset what would affect LNO, 
the samples should be randomly ordered (in X and y 
simultaneously).

It is recommended that N represents a significant 
fraction of samples (like leave-20 to 30% - out for smaller 
data sets40). It has been shown recently52 that repeating the 
LNO test for scrambled data and using average of Q2

LNO
 

with its standard deviation for each N, is statistically 
more reliable than LNO being performed only once. This 
multiple LNO test can be also performed in the two modes, 
with fixed or optimum number of factors. The critical N is 
the maximum value of N at which Q2

LNO
 is still stable and 

high. It is primarily determined by the size of a data set 
and somewhat less by its quality. For a good model, Q2

LNO
 

should stay close to Q2 from LOO, with small variations at 
all values for N up to the critical N. For single LNO, these 
variations can be quantified in the following way. Variations 
for single LNO are expressed as the range of Q2

LNO
 values, 

which shows how much Q2
LNO

 oscillates around its average 
value. By our experience, this range for single LNO should 
not exceed 0.1. In case of multiple LNO, a more rigorous 
criterion should be used, where two standard deviations 
should not be greater than 0.1 for N = 2, 3, etc., including 
the critical value of N. 

y-Randomization

The purpose of the y-randomization test45,46,50,53,54 is 
to detect and quantify chance correlations between the 
dependent variable and descriptors. In this context, the term 
chance correlation means that the real model may contain 
descriptors which are statistically well correlated to y but in 
reality there is no cause-effect relationship encoded in the 
respective correlations with y because they are not related 
to the mechanism of action. The y-randomization test 
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consists of several runs for which the original descriptors 
matrix X is kept fixed, and only the vector y is randomized 
(scrambled). The models obtained under such conditions 
should be of poor quality and without real meaning. One 
should be aware that the number of factors is kept the same 
as for the real model, since y-randomization is not based 
on any parameter optimization. The basic LOO statistics 
of the randomized models (Q2

yrand
 and R2

yrand
) should be 

poor, otherwise, each resulting model may be based on 
pure numerical effects.

Two main questions can be raised regarding 
y-randomization: how to analyze the results from each 
randomization run and how many runs should be carred 
out? There are various approaches to judge whether the real 
model is characterized by chance correlation. The simple 
approach of Eriksson and Wold53 can be summarized as a 
set of decision inequalities based on the values of Q2

yrand
 

and R2
yrand

 and their relationship R2
yrand

 > Q2
yrand

:

Q2
yrand

 < 0.2 and R2
yrand

 < 0.2 → no chance correlation;
any Q2

yrand
 and 0.2 < R2

yrand
 < 0.3 → negligible chance 

correlation;
any Q2

yrand
 and 0.3 < R2

yrand
 < 0.4 → tolerable chance 

correlation;
any Q2

yrand
 and R2

yrand
 > 0.4 → recognized chance 

correlation.

Therefore, the correlation’s frequency is counted as the 
number of randomizations which resulted in models with 
spurious correlations (falsely good), which is easily visible 
in a Q2

yrand
 against R2

yrand
 plot that also includes Q2 and R2 

values for the real model.
In another approach,54 the smallest distance between the 

real model and all randomized models in units of Q2 or R2 is 
identified. This minimum distance is then expressed relative 
to the respective standard deviation for the randomization 
runs. The distinction of the real model from randomized 
models is judged in terms of an adequate confidence level 
for the normal distribution. A simple procedure proposed 
in the present work, is to count randomized models which 
are statistically not distinguished from the real model 
(confidence levels are greater than 0.0001).

There is another approach to quantify chance correlation 
in the literature,46 based on the absolute value of the Pearson 
correlation coefficient, r, between the original vector y and 
randomized vectors y. Two y randomization plots r - Q2

yrand
 

and r - R2
yrand

 are drawn for randomized and real models, 
and the linear regression lines are obtained:

Q2
yrand

 = a
Q
 + b

Q
r (1)

R2
yrand

 = a
R
 + b

R
r (2)

The real model is characterized as free of chance 
correlation when the intercepts are a

Q
 < 0.05 and a

R
 < 0.3. 

These intercepts are measures for the background chance 
correlation, i.e., intrinsic chance correlation encoded in X, 
which is visible when statistical effects of randomizing the 
y vector are eliminated, i.e., the correlation between original 
and randomized y vectors is equal to zero (r = 0).

The number of randomized models encoding chance 
correlation depends primarily on two statistical factors. 
It strongly increases with the decrease of the number of 
samples in the training set, and is increased moderately for 
large number of randomization runs.54 Chemical factors, 
such as the nature of the samples and their structural 
similarity, data quality, distribution profile of each variable 
and variable intercorrelations, modify to a certain extent 
these statistical dependences. The approach of Wold and 
Eriksson53 consists of ten randomization runs for any data 
set size. This is a sufficiently sensitive test because models 
based on chance correlation easily fail in one or more (i.e., 
at least 10%) randomization runs. Several authors propose 
hundreds or thousands of randomizations independent 
of the data set size, while others argue that the number 
of randomizations should depend on the data size. The 
authors of this work have shown recently55 that 10 and 1000 
randomization runs provide the same qualitative information 
and, moreover, that the statistics for these two approaches 
are not clearly distinguished when the linear relationships 
(1) and (2) and that one between Q2

yrand
 and R2

yrand
 are 

inspected. Accordingly, it is expected that poor models will 
show unwanted performance in y-randomization, while 
good models will be free from chance correlation even for 
a small number of randomizations, as will be shown by the 
examples in this work.

Bootstrapping

Bootstrapping56,57 is a kind of validation in which the 
complete data set is randomly split several times into 
training and test sets, the respective models are built and 
their basic LOO statistics (Q2

bstr
 and R2

bstr
) are calculated 

and compared to that of the real model. Unlike validations 
(LOO and LNO) where each sample is excluded only 
once, in bootstraping a sample may be excluded once, or 
several times, as well as never. Since in each bootstrap run 
a new model is built, it is expected that the values of Q2

bstr
 

and R2
bstr

 satisfy the minimum acceptable LOO statistics 
in all bootstrap runs, and that they oscillate around the 
real Q2 and R2 (the LOO statistics of the real model) 
within reasonable ranges. The aim of bootstrapping is 
to perturb the training set, whilst statistics of the test set 
are not considered. 
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There are two issues to be considered when performing 
this validation. One is the procedure for making the 
bootstrappings i.e., data splits or resamplings, and the 
other is their number. Different number of splits have been 
proposed in the literature, ranging from low (ten) to high 
(hundreds). By its basic conception, bootstrapping does 
not require that the data split is based on high structural 
similarity between the training and test sets. The literature 
proposes random selection of samples for the training set by 
means of algorithms frequently coupled to various statistical 
procedures and also a rational split based on data subsets 
(clusters) in hierarchical cluster analysis (HCA).25,28 The size 
of the complete data set is the main factor that influences 
bootstrap procedures. In general, a small data set is difficult 
to split and exclusion of significant portion of its samples 
may seriously harm the model’s performance. Exclusion of 
about 30% of samples from the complete set is a reasonable 
quantity for smaller sets40 consisting of a few clusters of 
samples, some of which are poorly populated. Therefore, 
purely random procedures that do not take into account 
the structure and population of the clusters may produce 
unrealistically good or poor models in particular bootstrap 
runs. Random sampling within each HCA cluster, or within 
other types of clusters as, for example, obtained from y 
distribution (low, moderate and highly active compounds), 
better reflects the chemical structure of the complete data set. 
In large data sets, highly populated clusters will be always 
well represented in any random split, making clear why such 
sets are practically insensitive to exclusion of a significant 
portion of samples (more than 50%), independent of the type 
of random split employed.

External validation

Unlike bootstrapping, the external validation test 
requires only one split of the complete data set into 
structurally similar training and external validation sets. 
The purpose of this validation is to test the predictive 
power of the model. Basic statistical parameters that are 
used to judge the external validation performance (Table 
1) are the root mean square error of prediction (RMSEP), 
the correlation coefficient of external validation (Q2

ext
) and 

the Pearson correlation coefficient of prediction (R
ext

). Q2
ext

 
quantifies the validation and is analogous to Q2 from LOO, 
with exception of the term w (see Table 1), which is the 
average value of the dependent variable y for the training 
set and not the external validation set. R

ext
 is a measure of 

fitting for the external validation set and can be compared 
to R for the training set.

When performing external validation, two issues 
have to be dealt with. One is the number of samples in 

the external validation set and the other is the procedure 
for selecting them. It is recommended to use 30% of 
samples for the external validation of smaller data sets40 
and to keep the same percentage of external samples in 
bootstrapping and external validation.43 There are various 
procedures for selecting external samples. All of them 
have to provide chemical analogy between the training 
and external samples, structural proximity between the two 
data sets (similar variable ranges and variable distributions 
as a consequence of similar molecular diversities), and 
to provide external predictions as interpolation and not 
extrapolation. A reasonable approach for splitting the 
complete data set, which takes all these items into account 
is to use HCA combined with principal component analysis 
(PCA)25,28 scores, y distribution (e.g., low, moderate and 
high biological activity) and other sample classification.

Methods

Data sets

Four data sets of different dimensions were selected 
from the literature.5,39,53-55 Basic information about them, 
including splits adopted and validations performed in this 
work, are presented in Table 2. The complete data sets are 
in Supplementary Information (Tables T1-T4). The new 
splits performed in this work were based on exploratory 
analysis of autoscaled complete data sets, always using 
clusters from HCA with complete linkage method,25 
combined with PCA, y distribution and some sample 
classification known a priori. The regression models, MLR 
and PLS, were built using data previously randomized and  
autoscaled.

The QSAR data set 1 comprises five molecular 
descriptors and toxicity, -log[IGC

50
/(mol L-1)], against 

a ciliate T. pyriformis for 153 polar narcotics (phenols). 
This data set was originally defined by Aptula et al.,58 and 
it was used for the first time to build a MLR model by Yao 
et al.59 who also made a modest data split (14% samples 
out for the external validation). In this work, the real MLR 
model is based on a rather radical split (51% out) in order to 
show that even data sets of moderate size can enable good 
splitting and model performance in all validations.

The data set 2 is from a quantitative genome/structure-
activity relationship (QGSAR) study,39 a hybrid of QSAR 
and bioinformatics, in which the resistance of 24 strains 
of the phytopathogenic fungus P. digitatum against four 
demethylation inhibitors was investigated by PLS models. 
This data set consists of toxicity values -log[EC

50
/(mol L–1)] 

for 86 samples, described by eight descriptors, from which 
three are fungal genome descriptors and five are products 
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of some molecular and genome features. The reader may 
look at the original work39 for the definition of the matrix 
X. A new data split was applied in this work (35% out), 
which is more demanding than in the original publication. 
The purpose of this example is to show that even modest 
data sets can be successfully validated without using an 
auxiliary regression model.

The data set 3 is from a QSPR study on the carbonyl 
oxygen chemical shift (18O) in 50 substituted benzaldehydes,5 
comprising eight molecular descriptors and the shifts  
δ/ppm. Two literature PLS models, the real and the auxiliary 
model (20% out), are inspected in more details with respect 
to the validations carried out, especially bootstrapping.

The smallest data set 4 is from a series of QSAR 
studies based on MLR models,60 and it was used to predict 
mouse cyclooxigenase-2 inhibition by 2-CF

3
-4-(4-SO

2
Me-

phenyl)-5-(X-phenyl)-imidazoles. It consists of three 
molecular descriptors and the anti-inflammatory activity 
-log[IC

50
/molL–1] for 15 compounds. Only a very modest 

split (13% out) could be applied in this example, to show 
that very small data sets cannot provide reliable statistics 
in all the applied validations.

All chemometric analyses were carried out by using the 
software Pirouette® 61 and MATLAB®.62

Validations

Samples in all data sets were randomized prior to any 
validation. All single and multiple (10 times) leave-N-out 
(LNO) cross-validations were carried out by determining 
the optimum number of factors for each N when using 

PLS. For each data set, 10 and 25 randomizations were 
tested, to show the effect of the number of runs on chance 
correlation statistics. The same data split was used in 
external validation and bootstrapping, as suggested in the 
literature,43 to allow comparison between the respective 
statistics. At least two different bootstrap split schemes were 
applied for each data set, where the randomized selection of 
the training samples was made from the complete set, from 
subsets (clusters) in HCA, and other types of subsets (PCA 
clusters, y distribution, or some other sample classification). 
To demonstrate the effect of the number of resamplings 
on bootstrap statistics, 10 and 25 runs were carried out for 
each split scheme.

Inspection of data quality versus data set size

Data set size is the primary but not the sole factor that 
affects model performance. To evaluate how much the data 
quality, i.e., descriptors and their correlations with y, affect 
the model performance, the following investigations were 
carried out. First, data sets 1, 2 and 3 were reduced to the 
size of data set 4 (15 samples) according to the following 
principles: a) all descriptors possessed at least three distinct 
values; b) samples were selected throughout the whole 
range of y; c) very influential samples were avoided; and 
d) one or more samples were selected from each HCA 
cluster already defined in bootstrapping, proportionally to 
cluster size. Eventually formed subsets were subject to all 
validations in the very same way as data set 4. Second, the 
relationships between descriptors and y were inspected for 
all data sets and subsets in the form of the linear regression 

Table 2. Data sets used, real and auxiliary regression models built and corresponding validations carried out in this work

Data seta Typeb References Real modelc,d,e Auxiliary modelc,d,e

1: X(153×5) QSAR [MLR] Ref. 58, 59 75 (tr) + 78 (ev), 51% out:
LOO, LNO, YRD, BSR, EXTV 

-

2: X(86×8) QGSAR [PLS] Ref. 39 56 (tr) + 30 (ev), 35% out:
LOO, LNO, YRD, BSR, EXTV

-

3: X(50×8) QSPR [PLS] Ref. 5 50 (tr) + 0:
LOO, LNO, YRD

40 (tr) + 10 (ev), 20% out:
LOO, BSR, EXTV

4: X(15×3) QSAR [MLR] Ref. 60 15 (tr) + 0:
LOO, LNO, YRD

13 (tr) + 2 (ev), 13% out:
LOO, (BSR), (EXTV)

aData sets 1-4 with respective dimensions of the descriptors matrix X for the complete data set.
bTypes of study in which the data sets were originated: quantitative structure-activity relationship (QSAR), quantitative genome/structure-activity relationship 
(QGSAR) (a combination of QSAR and bioinformatics) and quantitative structure-property relationship (QSPR). Regression models in these studies are 
multiple linear regression (MLR) and partial least squares regression (PLS).
cThe real model is the model of main interest in a study, built for practical purposes. The auxiliary model is the model with a smaller number of samples 
than the real model, used to perform external validation and bootstrapping.
dData split: the number of samples in the training set (tr) + the number of samples in the external validation set (ev), and the percentage (%) of samples 
excluded from building the model but used for external validation and bootstrapping.
eValidations: leave-one-out cross-validation (LOO), leave-N-out cross-validation (LNO), y-randomization (YRD), bootstrapping (BSR), and external 
validation (EXTV). Abbreviations in parenthesis (BSR) and (EXTV) mean that due to very a small number of samples, validations were performed in a 
very limited way.
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equation y = a + b x, and the following statistical parameters 
were calculated by using MATLAB® and QuickCalcs63  
software: statistical errors for a (σ

a
) and b (σ

b
), respective 

t-test parameters (t
a
 and t

b
), Pearson correlation coefficient 

between a descriptor and y (R), explained fitted variance 
(R2), F-ratio (F), and normal confidence levels for 
parameters t

a
, t

b
 and F. This way, the interplay between data 

set size and quality could be rationalized and the importance 
of variable selection discussed.

Results and Discussion

Data set 1: QSAR modeling of phenol toxicity to ciliate 
T. pyriformis

Yao et al.59 have explored the complete data set of 153 
phenol toxicants by building a MLR model (reported:  
R = 0.911 and RMSECV = 0.352; calculated in the present 
work: Q2 = 0.805, R2 = 0.830, RMSEC = 0.335 and  
Q = 0.897), and also another MLR model with 131 training 
samples (reported: R = 0.924 and RMSEC = 0.309; 
calculated in this work: Q2 = 0.827, R2 = 0.854, RMSECV =  
0.328, Q = 0.910, Q2

ext
 = 0.702, R2

ext
 = 0.696, RMSEP =  

0.459 and R
ext

 = 0.835). This set is larger than those 
commonly used in QSAR studies and, therefore, various 
statistical tests could be performed. This was the reason to 
make a rather radical split into 75 and 78 compounds for 
the training and external validation sets (51% out), based 
on HCA analysis (dendrogram not shown). The LOO  
(Q2 = 0.773, R2 = 0.830, RMSECV = 0.403, RMSEC = 0.363,  

Q = 0.880 and R = 0.911) and external validation 
statistics (Q2

ext
 = 0.824, R2

ext
 = 0.824, RMSEP = 0.313 and  

R
ext

 = 0.911) obtained were satisfactory. To test the self-
consistency of the data split, the training and external 
validation sets were exchanged and a second model with 
78 training samples was obtained. Its LOO (Q2 = 0.780,  
R2 = 0.838, RMSECV = 0.349, RMSEC = 0.313, Q = 0.884 and 
R = 0.915) and external statistics (Q2

ext
 = 0.817, R2

ext
 = 0.817,  

RMSEP = 0.362 and R
ext

 = 0.908), were comparable to 
that of the first model. Results from other validations of 
the real MLR model are shown in Table 3, Figures 1-3 and 
Supplementary Information (Tables T5-T9 and Figures F1 
and F2).

Among the validations performed for the real model 
(Table 2), the single LNO statistics shows an extraordinary 
behavior, with critical N = 37 (49% out), because the values 
of Q2

LNO
 stay high (Figure 1) and do not oscillate significantly 

around the average value (Table T5) even at high N. Multiple 
LNO shows slow but continuous decrease of average Q2

LNO
 

and irregular increase of the respective standard deviations 
along N, so that up to N = 17 (23% out) two standard 
deviations (±σ) are not greater than 0.1. (Table T5). In other 
words, the training set with 75 training toxicants is rather 
stable, robust to exclusion of large blocks (between 17 and 
37 inhibitors), and the data split applied is effective.

Three bootstrap schemes for 10 and 25 runs were 
applied (Tables T6 and T7) to form training sets: by 
random selection of 75 toxicants from the complete data 
set, from HCA clusters (10 clusters at the similarity index 
of 0.60), and from PCA groups (plot not shown). In fact, 

Figure 1. Leave-N-out crossvalidation plot for the MLR model on data 
set 1. Black - single LNO, red - multiple LNO (10 times). Single LNO: 
average Q2 - dot-dash line, one standard deviation below and above the 
average - dotted lines. Multiple LNO: one standard deviation below and 
above the average - red dotted curved lines.

Figure 2. A comparative plot for bootstrapping of the MLR model 
on data set 1: the real model (black square), models from HCA-based 
bootstrapping (blue squares: 10 iterations - solid, 25 iterations - open), 
models from PCA-based bootstrapping (green squares: 10 iterations - 
solid, 25 iterations - open), and models from simple bootstrapping (red 
squares: 10 iterations - solid, 25 iterations - open).
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three PCA groups were detected in the scores plot, based 
on three distinct values of descriptor N

hdon
 (see Table T1). 

Classes of y were not applied since no gaps in the 
statistical distribution of y had been noticed. The graphical 
presentation of the results (Figure 2) shows that the data 
points are well concentrated along a R2 - Q2 diagonal, with 
negligible dispersion in the region defined by R2 < 0.85 
and Q2 < 0.80. The real model (the black point) is placed 
in the middle of the bootstrap points. Careful comparison 
of the three bootstrap schemes indicates that HCA-based 
bootstrapping has certain advantages over the other two 
schemes. It is less dispersed and more symmetrically 
distributed around the real model. This would be expected, 
since each bootstrap training set originating from the HCA 
contains toxicants that represent well the complete data set 
in terms of molecular structure and descriptors.

The real MLR model shows excellent performance in 
y-randomization with 10 and 25 runs (Tables T8 and T9). 
There are no randomized models in the proximity of the 
real model in the Q2 - R2 plot (Figure 3) since they are all 
concentrated at Q2 < 0 and R2 < 0.2. A significantly larger 
number of randomization runs should be applied to get 
some randomized models approaching the real model. 
This example illustrates how many randomized runs are 
necessary to detect a model free of chance correlation: 

the choice of 10 or even 25 runs seems reasonable, which 
agrees with the method of Eriksson and Wold.53 When 
the Q2 - r and R2 - r plots are analyzed (Figures F1 and 
F2), it can be seen that the randomized models are placed 
around small values of r so that the intercepts of the linear 

Table 3. Comparative statistics of 10 and 25 y-randomizations of the MLR model on data set 1

Parametera 10 iterations 25 iterations

Maximum (Q2
yrand

) -0.017 -0.017

Maximum (R2
yrand

) 0.157 0.182

Standard deviation (Q2
yrand

) 0.062 0.048

Standard deviation (R2
yrand

) 0.047 0.046

Minimum model-random. Diff. (Q2
yrand

)b 12.67 16.48

Minimum model-random. Diff. (R2
yrand

)b 14.30 14.25

Confidence level for min. diff. (Q2
yrand

)c <0.0001 <0.0001

Confidence level for min. diff. (R2
yrand

)c <0.0001 <0.0001

Randomizations %, conf. level > 0.0001 (Q2
yrand

)d 0 0

Randomizations %, conf. level > 0.0001 (R2
yrand

)d 0 0

y-Randomization intercept (r
yrand

 vs. Q2
yrand

)e –0.191 –0.176

y-Randomization intercept (r
yrand

 vs. R2
yrand

)e –0.012 0.003

aStatistical parameters are calculated for Q2 from y-randomization (Q2
yrand

) and R2 from y-randomization (R2
yrand

).
bMinimum model-randomizations difference: the difference between the real model (Table 1) and the best y-randomization in terms of correlation coefficients 
Q2

yrand
 or R2

yrand
, expressed in units of the standard deviations of Q2

yrand
 or R2

yrand
, respectively. The best y-randomization is defined by the highest Q2

rand
 or 

R2
rand

.
cConfidence level for normal distribution of the minimum difference between the real and randomized models.
dPercentage of randomizations characterized by the difference between the real and randomized models (in terms of Q2

yrand
 or R2

yrand
) at confidence levels 

> 0.0001.
eIntercepts obtained from two y-randomization plots for each regression model proposed. Q2

yrand
 or R2

yrand
 is the vertical axis, whilst the horizontal axis is 

the absolute value of the correlation coefficient r
yrand

 between the original and randomized vectors y. The randomization plots are completed with the data 
for the real model (r

yrand
 = 1.000, Q2 or R2).

Figure 3. The y-randomization plot for the MLR model on data set 1: 
black ball - the real model, blue balls - 10 randomized models, red balls 
- 25 randomized models.
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regressions (1) and (2) are very small (a
Q
 < –0.15 and  

a
R
 ≤ 0.003, Table 3).

All the validations for the real MLR model confirm the 
self-consistency, robustness and good prediction power 
of the model, its stability to resamplings and the absence 
of chance correlation. The primary reason for this is the 
number of compounds. One out of five descriptors (the 
number of hydrogen bond donors, N

hdon
, Table T1) shows 

degeneracy, i.e., it has only three distinct integer values, 
but it did not affect the model’s performance noticeably 
in this case.

Data set 2: QGSAR modeling of fungal resistance  
(P. digitatum) to demethylation inhibitors

Kiralj and Ferreira39 have used five latent variables 
to model the complete data set of 86 samples using PLS 
(96.8% variance, Q2 = 0.851, R2 = 0.874, RMSECV = 
0.286, RMSEC = 0.271, Q = 0.922 and R = 0.935), and also 
for the data split with 56 training samples when building 
the auxiliary PLS model (97.1% variance, Q2 = 0.841,  
R2 = 0.881, RMSECV = 0.305, RMSEC = 0.279, Q = 0.917, 

R = 0.939, Q2
ext

 = 0.844, R2
ext

 = 0.843, RMSEP = 0.272 and 
R

ext
 = 0.935). The split (35% out) was done based on six 

HCA clusters at a similarity index of 0.65. In this work, 
the model for 56 training samples was considered as the 
real model and it was further validated by bootstrapping. 
Results from validations for data set 2 are shown in Table 4 
and in the Supplementary Information (Tables T10-T15 
and Figures F3-F7).

The single and multiple LNO statistics (Table 4,  
Table T10 and Figure F3) show that the critical N is 10 
(leave-18%-out) and 17 (leave-30%-out), respectively. 
The variations of Q2

LNO
 in single LNO are uniform and less 

than 0.1, and the same is valid for two standard deviations 
in multiple LNO. Therefore, the real model is robust to 
exclusion of blocks in the range of 10 - 17 samples, which 
is reasonable for a data set of this size.40

Four bootstrap schemes were applied (Tables T11 
and T12) to randomly select 56 training samples from 
the following sets: 1) the complete data set; 2) the six 
HCA clusters; 3) three classes of y, based on its statistical 
distribution (low, moderate and high fungal activity 
referred to intervals 4.55-5.75, 5.76-6.75, and 6.76-7.70, 

Table 4. Important resultsa of single (Q2
LNO

)b and multiple (<Q2
LNO

> (σ))c leave-N-out crossvalidations for regression models on data sets 2, 3 and 4

Data set 2 Data set 3 Data set 4

N Q2
LNO

<Q2
LNO

> (σ) Q2
LNO

<Q2
LNO

> (σ) Q2
LNO

<Q2
LNO

> (σ)

1 0.841 0.841 0.895 0.895 0.798 0.798

2 0.847 0.842(3) 0.894 0.895(2) 0.709 0.801(28)

3 0.839 0.839(6) 0.877 0.896(3) 0.723 0.746(54)

4 0.845 0.839(6) 0.888 0.892(4) Av: 0.743(48)

5 0.845 0.842(6) 0.897 0.894(6)

6 0.850 0.835(8) 0.869 0.890(13)

7 0.828 0.836(5) 0.898 0.896(4)

8 0.853 0.839(8) 0.880 0.894(7)

9 0.834 0.837(11) 0.887 0.894(7)

10 0.819 0.842(8) 0.897 0.893(9)

11 Av: 0.840(10) 0.838(13) 0.889(13)

12 0.831(17) 0.885(14)

13 0.842(10) 0.888(11)

14 0.841(13) 0.890(11)

15 0.842(6) 0.898(7)

16 0.842(8) 0.896(7)

17 0.838(9) 0.890(19)

18 0.886(22)

19 0.892(13)

aPartial results are shown for values of N at which Q2 is stable and high.
bResults of single LNO: Q2

LNO
 - Q2 for a particular N, Av - average of Q2 with standard deviation in parenthesis (given for the last or last two digits).

cResults of multiple LNO: <Q2
LNO

> - average of Q2
LNO

 for ten runs, σ - respective standard deviation (given for the last or last two digits).
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respectively); and 4) three MDR (multidrug resistance) 
classes of fungal strains with respect to pesticides (resistant, 
moderately resistant and susceptible).39 The graphical 
presentation of the bootstrap models when compared to 
the real model (Figure F4), is very similar to that from 
data set 1. A new observation can be pointed out here, 
that the bootstrap models become more scattered as the 
number of runs increases, which is statistically expected. 
Resamplings based on HCA and y distribution seems to 
be the most adequate bootstrap schemes, because they are 
more compact and better distributed around the real model 
than those for the other two bootstrap schemes.

Results from 10 and 25 y-randomization runs 
(Tables T13 and T14) were analyzed numerically 
(Table T15) and graphically by means of the Q2 - R2 plot 
(Figure F5), and Q2 - r and R2 - r plots (Figures F6 and F7). 
The results are very similar to those from data set 1, leading 
to the same conclusion that the explained variance by the 
real PLS model is not due to chance correlation. In cases like 
this one, the results from a huge number of randomization 
runs18 would concentrate mainly in the region of these 10 
or 25 randomizations, confirming the conclusions that the 
real PLS model is statistically reliable.

Data set 3: QSPR modeling of carbonyl oxygen chemical 
shift in substituted benzaldehydes

Kiralj and Ferreira5 have used two latent variables to 
build the real PLS model for the complete data set of 50 
benzaldehydes (92.3% variance, Q2 = 0.895, R2 = 0.915, 
RMSECV = 9.10 ppm, RMSEC = 8.43 ppm, Q = 0.946 
and R = 0.957), and also for the data split with 40 training 
samples to construct an auxiliary PLS model (92.6% 
variance, Q2 = 0.842, R2 = 0.911, RMSECV = 9.59 ppm, 
RMSEC = 8.83 ppm, Q = 0.942, R = 0.954, Q2

ext
 = 0.937, 

R2
ext

 = 0.936, RMSEP = 6.79 ppm and R
ext

 = 0.970). This 
split (20% out) was done based on five HCA clusters with 
a similarity index of 0.70. In this work, these real and 
auxiliary models were further validated and the validation 
results were analyzed in detail.

The LNO statistics5 (Table 4, Table T16 and Figure F8) 
show that Q2 stays high and stable up to the value of  
N = 10 (leave-20%-out) in single LNO and N = 19 (leave-
38%-out) in multiple LNO, after which it starts to decrease 
and oscillate significantly. This is a very satisfactory result 
for a modest data set of fifty samples.

Three resampling schemes were applied in bootstrap 
validation (Tables T16 and T17) to exclude 10 from 50 samples 
randomly from the following sets: 1) the complete data set; 
2) the five HCA clusters; and 3) three classes of y, based on 
statistical distribution of y (low, moderate and high chemical 

shifts).5 Figure 4 shows the Q2 - R2 plot taking into account 
all the resampling schemes for 10 and 25 runs. Unlike the 
analogues for data sets 1 and 2, a different type of dispersion 
of the bootstrap models is observed in the plot. In fact, the data 
points are not well distributed along a diagonal direction but 
are substantially scattered in the orthogonal direction, along the 
whole range of values of Q2 and R2. The auxiliary model (the 
green point) is not in the centre of all bootstrap models, whilst 
the real model (the black point) is out of the main trend due to 
the different size of the training set. On the other hand, the plot 
still shows small variations in Q2 and R2, and no qualitative 
changes in this scenario are expected when increasing the 
number of bootstrap runs. Differences with respect to the 
analogue plots from data sets 1 and 2 may be a cumulative 
effect of diverse factors, as for example, smaller training set 
size, different ranges and statistical distribution profile of y, 
and the nature of y (chemical shifts against negative logarithm 
of molar concentrations). The common point in the three data 
sets is the performance of HCA-bootstrapping over the other 
schemes.

Results from 10 and 25 y-randomization runs 
(Tables T18 and T19) were analyzed numerically 
(Table T20) and graphically (Figures F9 - F11). The Q2 - R2 
plot (Figure F9) shows no chance correlation. It is likely 
that the results from a larger number of randomization runs 
would be concentrated in the region already defined. The 
Q2 - r and R2 - r plots (Figures F10 and F11) also show the 
absence of chance correlation, which is reconfirmed by 
numerical approaches in Table T20.

Figure 4. A comparative plot for bootstrapping of the PLS model on 
data set 3: the real model (black square), the auxiliary model (green 
square), models from HCA-based bootstrapping (blue squares: 10 
iterations - solid, 25 iterations - open), models from bootstrapping based 
on classes of y (pink squares: 10 iterations - solid, 25 iterations - open), 
and models from simple bootstrapping (red squares: 10 iterations - solid, 
25 iterations - open).
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The real model has somewhat weaker statistics than 
the previous one, but its statistics is still acceptable and in 
accordance to the data set size and recommendations for 
the five validation procedures.

Data set 4: QSAR modeling of mouse cyclooxigenase-2 
inhibition by imidazoles

Hansch et al.55 have built a MLR model for this small 
data set containing 15 inhibitors, with acceptable LOO 
statistics (reported: Q2 = 0.798, R2 = 0.886 and RMSEC = 
0.212; calculated in this work: RMSECV = 0.241, Q = 0.895 
and R = 0.941). Besides the real model, an auxiliary model 
was constructed in this work, by considering inhibitors 4 
and 10 (Table T4 in Supporting Information) as external 
validation samples. This data split, reasonable for such a 
small data set (13% out), was performed according to the 
HCA analysis which resulted in one large and one small 
cluster with 13 and 2 samples, respectively (dendrogram 
not shown). The two inhibitors selected were from the 
large cluster. The auxiliary model shows improved LOO 
statistics with respect to that of the real model (Q2 = 0.821,  
R2 = 0.911, RMSECV = 0.239, RMSEC = 0.202, Q = 0.908  
and R = 0.954). The external samples 4 and 10 are 
reasonably well predicted with calculated activities 6.52 
and 6.49, respectively, compared to their experimental 
values 6.72 and 6.19, respectively, which means less than 
5% error. The downside of this external validation is that it 
is not justified to calculate RMSEP, Q2

ext
 or other statistical 

parameters for a set of two inhibitors.
Both single and multiple LNO statistics (Table 4, Table 

T21 and Figure F12) show that the model is stable for  
N = 1 - 3 (leave-20%-out). The values of Q2

LNO
 in this interval 

of N oscillate within the limit of 0.1 (see Figure F12). These 
results indicate that the model is reasonably robust in spite 
of the data size.

The bootstrap tests for the MLR model were performed 
by eliminating two inhibitors by random selection from the 
complete data set and from the large HCA cluster. Other 
resampling schemes were not applied in this example due 
to the data size and its y distribution. The results obtained 
(Tables T22 and T23), when compared to that from the 
auxiliary model of the same data size (Figure 5), show 
rather unusual behavior. The data points in the R2 - Q2 plot 
are not well distributed along some diagonal direction as in 
the analyses for data sets 1 and 2, but are rather dispersed 
in the orthogonal direction, especially at lower values of Q2 
around 0.6. This suggests that Q2 would easily overcome 
the limit of 0.65 with increasing the number of resamplings. 
The auxiliary model (the green point), which should be 
closer to the bootstrap models than the real model, is placed 

too high with respect to the centroids of these models. The 
plot shows an unusual, “asymmetric” aspect unlike the 
analogue plots for data sets 1 - 3 (Figures 2 - 4), due to 
the pronounced differences between Q2 and R2 (see Tables 
T22 and T23).

Results from 10 and 25 y-randomization runs (Tables 
T24 and T25), when presented graphically (Figure 6), 
show a large dispersion of the data points. The points are 
placed along a R2 - Q2 diagonal and also spread around 
it. Furthermore, it is evident that a slight increase in the 
number of y-randomization runs would result in falsely good 
models that would be very close to the real model, meaning 
that this final model is based on chance correlation, and 
thus, is invalid. Compared to the previous y-randomization 
plots for data sets 1 - 3 (Figures 3, F5 and F9), a systematic 
increase of the dispersion of the data points can be observed. 
This trend is followed by the appearance of highly negative 
values of Q2 for the randomized models: about –0.2, –0.3, 
–0.6 and –1.1 for data sets 1, 2, 3, and 4, respectively.

To be more rigorous in this validation, further 
calculations were carried out, as shown in Table 5 and 
Figures F13 and F14. The smallest distance between the 
real model and randomized models is significant in terms 
of confidence levels of the normal distribution (<0.0001), 
both in Q2 and R2. The situation is even more critical when 
all distances are expressed in terms of the confidence 
level, since more than 40% of the randomized models are 
not statistically distinguished from the real model in Q2 
units, and much less but still noticeable in R2 units (for 
more than 10 runs). These tendencies seem to be more 

Figure 5. A comparative plot for bootstrapping of the MLR model on data 
set 4: the real model (black square), the auxiliary model (green square), 
models from HCA-based bootstrapping (blue squares: 10 iterations - solid, 
25 iterations - open), and models from simple bootstrapping (red squares: 
10 iterations - solid, 25 iterations - open).
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obvious when increasing the number of randomization runs. 
However, when the linear regression equations (1) and (2) 
are obtained, the intercepts do not approach the limits (a

Q
 

< 0.05 and a
R
 < 0.3) and the validation seems apparently 

acceptable. It is obvious that this inspection is not sufficient 
by itself to detect chance correlation in the model and so, 
one has to investigate the spread of the data points in the 
region around the intercept in both Q2 - r and R2 - r plots. If 
this spread is pronounced in the way that several data points 
are situated above the limits for intercepts, then the chance 
correlation is identified, which is exactly the situation in 
the present plots (Figures F13 and F14). In fact, the MLR 
model published by Hansch et al.60 has certainly failed in 
y-randomization, confirming that small data sets seriously 
tend to incorporate chance correlation. The other possible 
reason, although of less impact, is data degeneration 
(redundancy) in columns and rows of the data matrix X 
(see Table T4 in Supporting Information). The cumulative 
results of y-randomization and the other validations show 
that the real MLR model is not statistically reliable.

Data quality versus data set size: data subset 3

The comparative discussion of models’ performance in 
previous sections was based on data set size. In this section, 

Table 5. Comparative statistics of 10 and 25 y-randomizations of the MLR model on data set 4

Parametera 10 iterations 25 iterations

Maximum (Q2
yrand

) –0.202 0.206

Maximum (R2
yrand

) 0.404 0.563

Standard deviation (Q2
yrand

) 0.316 0.341

Standard deviation (R2
yrand

) 0.115 0.153

Minimum model-random. Diff. (Q2
yrand

)b 3.16 1.74

Minimum model-random. Diff. (R2
yrand

)b 4.19 2.10

Confidence level for min. diff. (Q2
yrand

)c 0.0016 0.0819

Confidence level for min. diff. (R2
yrand

)c <0.0001 0.0357

Randomizations %, conf. level > 0.0001 (Q2
yrand

)d 40% 48%

Randomizations %, conf. level > 0.0001 (R2
yrand

)d 0 24%

y-Randomization intercept (r
yrand

 vs. Q2
yrand

)e –0.989 –0.739

y-Randomization intercept (r
yrand

 vs. R2
yrand

)e –0.011 0.077

aStatistical parameters are calculated for Q2 from y-randomization (Q2
yrand

) and R2 from y-randomization (R2
yrand

). Values typed bold represent obvious 
critical cases.
bMinimum model-randomizations difference: the difference between the real model (Table 1) and the best y-randomization in terms of correlation coefficients 
Q2

yrand
 or R2

yrand
, expressed in units of the standard deviations of Q2

yrand
 or R2

yrand
, respectively. The best y-randomization is defined by the highest Q2

rand
 or 

R2
rand

.
cConfidence level for normal distribution of the minimum difference between the real and randomized models.
dPercentage of randomizations characterized by the difference between the real and randomized models (in terms of Q2

yrand
 or R2

yrand
) at confidence levels 

> 0.0001.
eIntercepts obtained from two y-randomization plots for each regression model real. Q2

yrand
 or R2

yrand
 is the vertical axis, whilst the horizontal axis is the 

absolute value of the correlation coefficient r
yrand

 between the original and randomized vectors y. The randomization plots are completed with the data for 
the real model (r

yrand
 = 1.000, Q2 or R2). 

Figure 6. The y-randomization plot for the MLR model on data set 4: 
black ball - the real model, blue balls - 10 randomized models, red balls 
- 25 randomized models.



Basic Validation Procedures for Regression Models in QSAR and QSPR Studies J. Braz. Chem. Soc.784

the data quality, i.e., relationships between descriptors X 
and the dependent variable y, are inspected in two ways. 
First, data sets 1, 2 and 3 were reduced to small subsets 
of 15 samples, to inspect how much the data size and its 
quality affect the performance of the models. Second, to 
rationalize these results and emphasize the importance of 
variable selection, correlations between X and y for all data 
sets and their subsets were inspected by calculating various 
statistical parameters.

The largest set, data set 1, was reduced to 15 samples 
(denominated as subset 1, containing the toxicants 4, 17, 
20, 32, 37, 51, 53, 62, 70, 71, 113, 133, 141, 143 and 149), 
but its poor performance in LOO (Q2 = 0.073) did not 
justify any further validation. All attempts to reduce data 
set 2 failed because certain descriptors which were not 
indicator variables in the original data, became degenerate 
(i.e., were reduced to two distinct values) due to the loss 
of information. Among the three data sets tested for size 
reduction, only data set 3 could be reduced successfully 
to a subset (denominated as subset 3) and validated in the 
same way as data set 4. All analyses for this data subset 
can be found in the Supplementary Information (Tables 
T26 - T32 and Figures F15 - F19).

The real PLS model for data subset 3 still has acceptable 
LOO statistics when two latent variables are used (91.8% 
variance, Q2 = 0.779, R2 = 0.897, RMSECV = 13.6 ppm, 
RMSEC = 10.4 ppm, Q = 0.892 and R = 0.947), which is 
somewhat inferior to that of the real model for data set 3 
(the differences are more obvious in RMSEC and RMSECV 
than in the correlation coefficients), but is comparable to 
that of the real model for data set 4. The same number of 
latent variables is used for the auxiliary model (91.8% 
variance, Q2 = 0.738, R2 = 0.889, RMSECV = 15.0 ppm, 
RMSEC = 11.1 ppm, Q = 0.874 and R = 0.943), which 
is obtained when benzaldehydes 7 and 37 are treated as 
external samples. These samples were selected from an 
HCA histogram (not shown) and, not surprisingly, the 
predictions are satisfactory. The experimental chemical 
shifts are 570.1 and 520.0 ppm for 7 and 37, respectively, 
and predicted shifts are 564.3 and 513.9 ppm, respectively, 
which amounts to less than 7% error. When analyzing the 
performance of the real model in LNO, bootstrapping 
and y-randomization, it is obvious that the model is much 
inferior to that from data set 3, due to the difference in the 
number of samples. However, when compared to that from 
data set 4, the model for subset 3 is somewhat better in 
single and multiple LNO (critical N = 4 or leave-27%-out 
versus N = 3), the same atypical behavior is also observed 
in the Q2 - R2 space for bootstrapping, and the model is also 
based on chance correlation. The model’s failure in most of 
the numerical and graphical analyses for y-randomization 

is even more obvious than that of the model for data set 
4. Even though small data sets allow the construction of 
models with reasonable LOO, LNO and external validation 
statistics (as has been shown in this section), this does 
not imply reasonable performance in bootstrapping and 
y-randomization. Concluding, small data sets of about 15 
samples are not suitable for a QSAR or QSPR study.

Effects of sample randomization to leave-N-out 
crossvalidation and y-randomization

It has been emphasized in this work that sample 
scrambling is an important step prior to model validation, 
by which the randomness of a data set is enhanced. 
The effects of this randomization can be found in the 
Supplementary Information (Figures F3, F8, F12 and F15, 
and two special sections containing Tables T33 - T38 and 
Figures F20 - F26 with discussion), where the results from 
LNO and y-randomization are presented for data sets 1 - 4 
and subset 3, using the original descriptor blocks, X. The 
reader should keep in mind that data sets with significant 
redundancy in samples are not of random character, and 
consequently, a regression model built on such data will 
have falsely good performance in validation procedures,50 
even though sample randomization has been performed.

Data quality versus data set size: statistics of x - y 
relationships

There are 90 relationships between descriptors and 
dependent variables (i.e., x - y relationships) for all data 
sets and subsets studied in this article, presented as linear 
regressions y = a + bx and analyzed via correlation 
coefficients, t-test and F-test parameters (Figures F20 - 
F25 and Table 33 in Supplementary Information). Careful 
analysis of these statistics may aid in explaining the behavior 
of QSAR or QSPR models in all validations performed. 
First, models built for various subsets of the same data set 
deteriorate as the number of samples decreases, which is 
a consequence of the fact that x - y relationships tend to 
become less statistically significant when there are fewer 
samples. Second, some statistical parameters are, although 
not identical, very highly correlated to each other. This is 
valid for square of R and R2; F-value (F) and the square 
of the t-test parameter for b (t

b
); and the confidence levels 

for t
b
 (p

b
) and F-value (p). Third, minimum values of some 

parameters are not so problem-dependent but may be well 
related to the statistical significance of x - y relationships: 
R > 0.3; R2 > 0.1; F > 5; t

b
 > 2.5, and probably t

a
 > 2.5. 

However, the exact limits for t-test parameters and F-value 
in a particular study are extracted from statistical tables, 
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which strongly depend on the number of samples. It is 
recommended44,49 to use confidence level 0.05 or 0.01 for 
t-test and F-test. In fact, variable selection should provide 
statistically significant x - y relationships, so model 
validation does not have to deal with poor and individual 
problematic x - y relationships but with the relationship 
between the descriptor block X as a whole and y.

In the light of these facts, it is possible to understand 
the scatterplots for the data sets studied (Figures F20 - F24 
and Table 33). It is rather clear that data set 1 contains 
only one statistically significant descriptor (LogK

ow
), 

whilst another one (N
hdon

) behaves as a poorly distributed 
degenerate variable (there are 126, 24 and 3 samples with 
values N

hdon
 = 1, 2 and 3, respectively). The other three 

descriptors (pK
a
, E

LUMO
 and E

HOMO
) are characterized by 

very high dispersion in their scatterplots and, consequently, 
the x - y relationships are not statistically significant (see 
bold descriptors and values in Table T33). In other words, 
the models built for data set 1 and its subsets are based on 
at least three statistically not significant x - y relationships, 
meaning that the selected variables were not so significant. 
The large number of samples has simply masked their 
deficiencies so that they could not be detected by the five 
validation procedures and, consequently, the model for 
set 1 showed excellent performance in all tests. However, 
successful reduction of data set 1 to 15 samples was not 
possible. Therefore, data set 1 is an example of a large and 
falsely good set for building QSAR models.

Although x - y relationships for data set 2, of moderate 
size, were all statistically significant, it was also not 
possible to reduce the data from 86 to 15 samples. It 
probably contains some non-linear relationships, but this 
is questioned by the following items: a) a few data at high 
values for certain descriptors are not sufficient to confirm 
non-linearities; b) how to interpret the non-linearities in 
terms of fungal genome; and c) how to form subsets since 
three genome descriptors have only three distinct values.

Another set of moderate size, data set 3, has the most 
adequate scatterograms, and is based on statistically 
significant x - y relationships. When it is reduced to 
15 or less samples, only one or two x - y relationships 
become partially insignificant in parameters for a. Data 
set 4, besides being small, is characterized by three x - y 
relationships from which only one is statistically significant 
(ClogP), another is insignificant (MgVol) and the third is 
not sufficiently significant (B1

X.2
). This set is a typical 

example of a small and falsely good data set, which, 
in spite of this fact, showed good performance in some 
validation tests. This is another example indicating the 
need to couple variable selection based on statistical tests 
for x - y relationships and model validation.

A simple way to verify self-consistency of a data is to 
see if the positive or negative contribution of a descriptor 
to y remains the same during the data split and building 
regression models. This contribution can be seen from the 
x - y relationship, using the signs of correlation coefficient 
R or regression coefficient b and the respective regression 
coefficient from the real model. For self-consistent data, 
the sign of R or b for a descriptor should be the same in the 
complete data set and all of its subsets, and also equal to the 
corresponding regression coefficient from the real model. 
In this sense, data set 1 showed being inconsistent both in 
data split and model building (in 3 out of 5 descriptors), 
data set 2 only in modeling (due to non-linearities, as seen 
in 2 out of 8 descriptors), and data sets 3 and 4 and subset 
3 were self-consistent in all descriptors (see Table T39). 
This self-consistency is important from the statistical point 
of view and also for model interpretation and mechanism 
of action.

Conclusions

Four QSAR and QSPR data sets from the literature 
were used to rebuild published or build statistically 
related regression models. These models were validated 
by means of leave-one-out crossvalidation, leave-N-out 
crossvalidation, external validation, y-randomization and 
boostrappings. The five validation tests have shown that 
the size of the data sets, more precisely, of the training 
sets, is the crucial factor determining model performance. 
The larger the data set, the better is its validation statistics. 
Very small data sets suffer from several deficiencies: 
impossibility of making validations (data split is not 
possible or is not sufficient), failure and atypical behavior 
in validations (chance correlation, lack of robustness in 
resampling and crossvalidations). Obtaining satisfactory 
statistics in leave-one-out crossvalidation and fitting and 
even in external validation is not a guarantee for good model 
performance in other validations procedures. Validation 
has to be carried out carefully, with detailed graphical and 
numerical analyses of the results obtained. The critical N in 
LNO at which Q2 is still stable and high, can be determined 
by applying the limit of 0.1 for oscillations in Q2, defined 
as the variation range in single LNO and two standard 
deviations in multiple LNO. It has been demonstrated 
that it is not necessary to perform a large number of 
y-randomization or bootstrap runs to distinguish acceptable 
from non-acceptable regression models. Comparing 
various bootstrap schemes, it has been noted for data sets 
1 - 3 that resampling based on clusters from hierarchical 
cluster analysis, and perhaps on some other schemes, 
gives somewhat more reliable and reasonable results than 
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that relying only on randomization of the complete data 
set. Data quality in terms of descriptor - y relationships 
is the second important factor which influences model 
performance. A reliable model has to be constructed from 
statistically significant x - y relationships, emphasizing 
the important role of variable selection. Statistically 
insignificant x - y relationships in large data sets can be 
masked by data size, resulting in models with excellent 
performance in all validation procedures, but at the end the 
QSAR or QSPR models obtained are false.
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