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A inversão de espectro experimental de vida média de aniquilação de pósitron foi realizada com
o intuito de se obter a função densidade de probabilidade. A resolução do aparelho, juntamente com
ruído experimental foram considerados na resolução deste problema mal-colocado. O método de
decomposição em valores singulares, movendo-se o limite entre os subespaços foi a formulação
teórica empregada para calcular a função densidade de probabilidade. O complexo Al(dpm)

3
, sistema

considerado no presente trabalho, apresenta três picos no espectro invertido, indicando a presença de
para-positrônio, pósitron livre e orto-positrônio. As posições previstas foram 0,1042 ns, 0,3542 ns
e 1,3958 ns, respectivamente. Como o presente método fornece a distribuição das espécies, é
possível também prever a relativa importância de cada espécie no espectro. As áreas obtidas foram:
13%, 32%, 55%. Ambos resultados, posição dos picos e áreas relativas, bem como a distribuição
dos tempos de meia-vida, podem fornecer informações importantes para experimentalistas.

Inversion of experimental positron annihilation lifetime spectra was carried out to obtain the
probability density function. Apparatus resolution together with experimental noise was taken into
consideration while solving this ill posed problem. The singular value decomposition approach,
moving the boundary between the subspaces was the theoretical formulation to calculate the probability
density function. For the system considered, the Al(dpm)

3
 complex, three peaks will be presented in

the inverted spectra, indicating the presence of the para-Positronium, the free positron and the ortho-
Positronium. The predicted positions were, 0.1042 ns, 0.3542 ns and 1.3958 ns, respectively. Since
the present approach gives the distribution of the species, it was possible also to predict the relative
importance of each species in the spectra. The areas found correspond to: 13%, 32%, 55%. Both
these results, position of the peaks and the areas, together with the half-life distribution can provide
important information for experimentalists.

Keywords: probability density function,  positron annihilation lifetime espectra, singular value
decomposition

Introduction

The positronium (Ps) is formed by the collision between
positron, e+, and electron, e–. For example, in an irradiated
22Na, positron is formed with an energy of about 180 KeV
and after thermalization this energy decays to 200 eV. This
will produce Ps in the singlet state (p-Ps) and triplet state
(o-Ps) which will have intrinsic lifetimes of 0.125 ns and
140 ns, respectively. The difference in these lifetimes can
be explained by the angular momentum conservation law,
since the singlet state annihilates to two photons while
the triplet state does to three photons. Inside the matter the
lifetime of the positronium is reduced, compared with its
intrinsic value, by some reactions which can be classified
mainly in three groups: (i) annihilation pick-off, (ii) spin

conversion and (iii) chemical reactions (oxidation,
complexation and substitution).1

The positronium annihilation process is recorded as
the counting of gamma radiation per time, c(t). In a simple
model this will be a multiple decaying exponential
function of time. Considering the singlet and triplet states
and the free positron, this counting, in this simple model
will be , in which λ is the rate constant
for each process and P(λ) its corresponding probability.
For a continuous distribution of half-life, with the density
probability f(λ) = P(λ)/∆λ, a more precise model will be
described by,

(1)

with K(t,λ) = e–λt, according to the developed model. For a
given K(t,λ) the calculation of c(t) from f(λ) represents the
direct problem, whereas the opposite, i.e., calculation of
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f(λ) from c(t) characterizes the inverse problem. Several
solutions are possible for the inverse problem since any
function of the kind, f(λ) + g(λ), with I

a

b k(t,λ)g(t,λ)dλ = 0 is
also a solution of the problem. This multiple solution
character of the inverse problem is sufficient to classify it
as an ill posed problem. According to Hadamard a problem
is ill posed whenever one of the three conditions,
uniqueness, continuity and existence are not satisfied.2

Additionally, as to be shown, the calculation of the
probability density function from experimental
annihilation rate may not exist and is usually not
continuous.

The solution of an ill posed problem can be found by
several methods, the most common being the Tikhonov
regularization3,4, the singular value decomposition5 and
the neural network.6 The inversion of simulated positron
annihilation spectra has been performed before by the
singular value decomposition7 and the Hopfield neural
network,8 on simulated data. Instead of dealing with
simulated data, the present work will handle laboratory
data for the Al(dpm)

3
 system.9 The singular value

decomposition method will be used, which has been
proved to be very useful while inverting data in simulated
data, both in positronium annihilation8 and in
thermodynamics10. Effects not considered before, the
experimental noise in the data and the choice of zero time
channel, will be also discussed.

Singular Value Decomposition

Within a representation, equation 1 can also be written
as Kf=c. Typical intervals for t and τ = 1/λ are 0 ≤ t ≤ 30  and
0 ≤ τ ≤ 3, in nanoseconds. Since the kernel is a decaying
function of these variables, the matrix elements of K will
approach zero. In a more elementary term, if the basis set
size for t and τ, respectively denoted by m and n, are equal,
the determinant of K is approximately zero. Therefore the
inherent experimental error in c(t) will be amplified while
computing f = K-1 c. Also the singular values of K will
decay slowly to zero, implying the existence of a nullspace.

In more general terms, finding the solution of an ill
posed problem Kf = c, where K ∈ Rm×n, f ∈ Rn and c ∈ Rm,
is therefore equivalent to consider the linear
transformation, K, between the spaces Rn and Rm. A crucial
step in studying the solution of this problem is to realize
that each of these vector spaces can be divided into two
subspaces which are:5,11 (a) The range of K, denoted by
R(K), and defined as, R(K) = {c ∈ Rm | Kf = c,f ∈ Rn}; (b)
The unicity of the solution of a linear system of equations
is related with another subspace, the nullspace of K, N(K),
defined as, N(K) = {f ∈ Rn | Kf = 0}. So far two subspaces

have been defined, one in Rn and another one in Rm. The
two remaining subspaces, also one in Rn and one in Rm, are
analogous to the range and nullspace, defined for the
transpose of K, KT. For f belonging to Rn it is left with only
two possibilities; either it belongs to R(K)T or it belongs
to N(K). If f does not belong to the nullspace it has to
belong to range of the transpose, implying that this
subspace is the solution space of K, denoted also by S(K).
Again, for a c ∈ Rm it can belong to the range of the matrix
or to the nullspace of the transpose.

Using the singular value decomposition method (SVD)
it is possible to establish the dimension and the basis set
for the four basic sub-spaces. This method consists, when
applied to K, in a decomposition of the form:

(2)

in which U ∈ Rm×n, Σ ∈ Rm×n and V ∈ Rn×n. The matrices U
and V are orthogonal. The matrix Σ is diagonal with
positive elements, σ

i 
, appearing in a decreasing order in

the diagonal. The elements σ
1 

, σ
2 

, …, σ
n
  are unique,

however, the matrices U and V are not.
Developing equation 2 to Kf=c one obtains

(3)

where u
j
 and v

j
 are the jth columns of U and V respectively.

The above solution, using the SVD method has two
important features: (a) it minimizes || Kf – c ||

2

2 , and (b) the
SVD solution is the solution with minimum norm. Here
also the problem is not completely solved, since, in the
presence of errors in c, a point to stop the summation,
equation 3, has to be chosen. In fact this cutoff point can
not be obtained only on mathematical grounds. Physical
and chemical information about the inverted function are
necessary, such as, non negative values, similar chemical
species and number of peaks to be expected. Only with
these additional restrictions an adequate f(λ) can be
retrieved.

Results and Discussions

Positron annihilation lifetime spectra for the complex
Al(dpm)

3
 were measured for 600 channels, with a window

of 0.0456 ns and for 300.000 total counting. The
experimental spectrum is shown in Figure 1. As a first
analysis of this spectrum one can use a logarithm scale in
an attempt to show the contribution of each positronium
annihilation process. This procedure has the inconvenience
of assuming independence of the Ps half-lives and

I
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neglecting the apparatus resolution. Although preliminary
information can be obtained by this process it is more
convenient to rewrite the original problem, equation 1,
taking into account the apparatus resolution. This can be
achieved by redefining the kernel as,

(4)

with, . This resolution has a

gaussian shape with the parameters intensity, I
i
 , center, t

i 
,

and half width, s
i
, given in Table 1. The new kernel

transforms the original problem into:

(5)

For the present case, the time scale has moved to the
left, equivalent to four channels. In the above equation
a = 0 ns and b = 2.5 ns.

Dimensions of the subspaces Rm and Rn have to be found
if the probability density function is to be calculated.
Dimension of Rm is given by the number of experimental
data available whereas the dimension of Rn will be dictated
by a convergence criterion. Since 500 experimental points
will be used one might establish the size of Rm as also
equal to 500. A more elaborated analysis is required for Rn.
In this case the quantity n  has to be varied until the

obtained result for  || Kf – c ||
2

2 is within the experimental
error. For the present experiment an error of 10–3 was
obtained. Therefore the value of n was chosen such that
|| Kf – c ||

2

2 ≈ 10–4, corresponding to n = 60 and within the
experimental error.

The effect of experimental error on the probability
density function is conveniently analyzed by the singular
value decomposition method. If the noise is denoted by
δc(t), i.e., the experimental annihilation spectrum is c(t) +
δc(t), the calculated probability density function will be
f(t) + δf(t) for the problem is linear. In fact, using equation
3 it can be written,

(6)

If  δc ∈ N(K)T the solution will be unperturbed for, in
this case, uT

j
 · δc = 0. This is certainly not the case in the

experimental situation, in which the noise behaves
randomly. Equation 6 gives also an important connection
between the properties of the kernel and the computed
solution. The singular values of the kernel representation
are a decaying function of the matrix index. The first few
numerical values for σ

i
 are also given in Table 2. After the

seventh or eighth value these quantities become very small
and will not have an important contribution to the solution
space. In fact this will define the beginning of the nullspace.
The effective rank being equal to 8 is also inferred from
Table 2.

The maximum singular value, σ
max

 over its smallest
value, σ

min
, that is the condition of the matrix, cond (K),

can be used to measure how the noise will be amplified.
For the present case cond (K) = 4.7412 x 1018 showing that
even the background noise can be largely amplified. This
explains why traditional methods, such as Gaussian
elimination,11 can not be used to calculate the probability
density function from the annihilation spectra. An

Table 1. Constants to define the resolution function. Units are in
nanoseconds

Constants i = 1 i = 2 i = 3

s
i

0.1423 0.2098 0.1091
I

i
0.4767 11.45 0.4088

t
i

0.000 -0.009 -0.018

 Figure 1. Positron annihilation lifetime spectra for the Al(dpm)
3
.

Table 2. Singular values as a function of the matrix index

Index Singular Value Percentage

1 3.122(-1) 65.93
2 1.068(-1) 22.55
3 3.686(-2) 7.784
4 1.222(-2) 2.579
5 3.852(-3) 8.133(-1)
6 1.172(-3) 2.476(-1)
7 3.330(-4) 7.031(-2)
8 7.811(-5) 1.649(-2)
9 1.380(-5) 2.914(-3)
10 1.800(-6) 3.801(-4)
11 1.744(-7) 3.682(-5)
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alternative approach, such as the one presented here, has
to be employed.

Calculation of the basis and controlling the dimension
of the four subspaces constitutes an appropriate restriction
to solve the problem. The algorithm to calculate the basis
u

j
 and v

j
 , j = 1, 2, ..., n is described in reference.5 Direct

computation of the probability density function, using
equations 5 and 3 were carried out. A smooth passage from
the solution space to the nullspace is carried out by

introducing the filter factor , in which η is

a regularization parameter.
This will also define an effective dimension of each

subspace, together with the consideration of singular
values. The optimum regularization parameter, η*, was
obtained by using the L curve criterion, as discussed
before12, giving η* = 9×10-5.

The results were further improved by truncating the
decomposition at some values of the basis. This will
complement the smooth passage from one subspace to the
other. The rank, that is the number of singular values
different from zero, of the kernel in the above
representation is 33. If the problem is solved without the
filter factor, truncating at k = rank(K) = 6 unphysical results
are obtained. In the presence of the above filter the rank
could be moved to 8 or even larger values since the results
are multiplied by a decaying function. That the above
problem is ill posed can be easily confirmed at this point
since rank(K) = 33 for a matrix of dimension 500 x 60. The
dimension of the nullspace, for these values, is, therefore,
dim (N(K))=27.

An analysis of the basis v
j
 , used in equation 3, can also

be useful. This basis, as j increases, becomes a more
oscillating function and it is not appropriate to describe
the probability density function. That is the reason why
one should impose the condition8, f (λ) > 0, for the inverted
results obtained from equation 3.

The computed probability density function under the
above considerations is presented in Figure 2, showing
the presence of three species in the counting process. At
0.1042 ns there appears the p-Ps, at 0.3542 ns the free
positron and at 1.3958 ns the o-Ps. These values were taken
as the maximum of the probability density function, but it
should be pointed out that the lifetime spectra is in fact a
distribution, as shown in the figure. These half-lives are in
excellent agreement with those published in the literature,9

which are, respectively, 0.12 ns, 0.35 ns and 1.62 ns. Another
important quantity for the positron annihilation lifetime
spectroscopy is the area under the curves. The area
contribution for the species p-Ps, free positron and o-Ps
are, respectively, 13%, 32%, 55%, whereas the literature

values9 correspond to 19.9%, 24.1% and 56.0%. The half-
lives and areas in reference9 were obtained in an
approximate way, by fitting the logarithm of c(t) to a set of
three linear equations. From this consideration, it is
believed that the present results are more reliable, since it
handles the data directly, giving the distribution of half-
lives and its respective areas. Also, the inversion is
performed in a functional way, that is, no initial function
is necessary to obtain the probability density function.

Conclusions

Probability density function for the positron
annihilation process was obtained from experimental
annihilation data taking into account also the apparatus
resolution. The singular value decomposition method was
chosen to handle this ill posed problem. In this approach
four basic subspaces are defined and the boundary between
them are to be found computationally. Definition of the
basis and dimension provides a way to calculate the
function f (λ).

A total of 500 points in the spectra and a representation
of basis dimension up to 60 was found necessary to
appropriately describe the positron annihilation process
in Al(dpm)

3
. Since the singular values decay smoothly to

zero it was found necessary to use a filter factor which will
decrease their importance while calculating the probability
density function. Together with this filter the dimension
of the solution subspace was defined to have dimension
equal to eight. These two aspects to invert the problem
give very precise values of half-life and relative intensity.

The position of the peaks and their areas were predicted
with a tolerable accuracy showing that the present approach

Figure 2. Inverted density function from positron annihilation data.
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can be used as an important theoretical and computational
tool to analyze the experimental positron annihilation
lifetime spectra. The computer code used to calculate the
probability density function from the annihilation spectra
has 600 lines of code and the computer time to obtain a
given value of f (λ), such as in Figure 2 is negligible. This
computer code can also be adapted to other inversion
problem, if the problem can be described by equation 1.
No information a priori was given to the inversion
procedure. If some extra information is available the results
may also be improved. This extra information could be
another spectrum for a similar molecule. For example, while
inverting data for the He-He potential an extra restriction
such that the minimum is to be found with respect to the
He-Ne interaction was used.10 The same approach can be
used here.
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