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Este artigo investiga, teoricamente, a dinâmica de um modelo de membrana sob estimulação
elétrica externa. Este sistema mostra vários tipos de respostas oscilatórias no potencial da membrana,
quando uma corrente sinoidal AC é superposta à corrente DC aplicada através da membrana. À
medida que a frequência da corrente AC varia, este comportamento varia de oscilações periódicas,
P1, até oscilações do tipo explosivas, através de regiões de quase-periodicidade. As séries temporais
que apresentam estes comportamentos são caracterizadas usando métodos de Teoria de Sistemas
Dinâmicos, a saber: mapas de retorno, expoentes de Lyapunov, espectro de potências e dimensão
de capacidade. Os resultados são discutidos em relação a membranas biológicas sob condições
similares.

In this paper we theoretically investigate the dynamics of a membrane model under external
electric stimulation. The system shows various types of oscillatory responses in the membrane
potential when a sinusoidal AC electric current is superimposed on the DC current applied across
the membrane. The behavior goes from periodic oscillations, P1, to bursting type oscillations via
quasiperiodicity, when the frequency of the AC current is varied. The time series displaying these
behaviors are characterized using the methods of Dynamical System Theory, namely, return map,
Lyapunov exponents, power spectrum and capacity dimension. The results are discussed in relation
to biological membranes under similar conditions.
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Introduction

The effect of periodic perturbations on the dynamics of
oscillatory chemical system has been extensively studied
both theoretically and experimentally in the last decade1-4,
mainly on the famous Belousov-Zhabotinskii reaction, the
cerium ion catalyzed oxidation of malonic acid by bromate.
This interest has been motivated mainly by the desire to
understand excitability and signal transmission in biologi-
cal systems, for example, the synaptic transmission in the
central nervous system; the excitation and contraction of
cardiac muscle5,6.

In the case of oscillations in artificial membranes the
research has been also motivated by its implications in
biological systems. A number of important biological phe-
nomena are rhytmical and appear to result from the oscil-

latory interaction of a membrane with its environment,
namely: sustained oscillations in neurons and pacemaker
cells in the heart and secretory glands. Although the scale
and the mechanisms of the processes in artificial mem-
branes may not be close to those found in real biological
systems, it is expected that they give fundamental informa-
tion useful in elucidating the oscillation processes at
biomembranes in living organisms.

Periodic perturbations of membrane systems have not
been studied nearly as much as chemical systems, however
there is a fair amount of published work on the subject7-10.
The studies in this field have been focused on bifurcations,
or transitions to complex oscillations and chaos that caused
by the application of periodic or quasi-periodic stimulations
to an excitable cell in a self-sustained state of periodic
oscillatory behavior. In this paper, by using a broad pore
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membrane model, we report complex dynamics (bursting
and quasiperiodicity) in the membrane potential when the
system is driven by a periodic stimulating current. This is
achieved perturbing the direct current applied across the
membrane by superimposing a small amplitude sinusoidal
AC electric current.

Model Equations

The model is an electrochemical device that consists of
a highly porous ion-exchanger membrane which separates
two electrolyte solutions of different and constant concen-
trations, permitting a steady diffusion process. Oscillations
of the electrical voltage across the membrane and hydro-
static pressure occur when the membrane is polarized by an
electrical current. The oscillations are brought about by
periodic transitions of the salt content in the membrane
caused by the antagonistic action of the hydrostatic and
electro-osmotic pressure across the membrane. In this
membrane oscillator system there are three kinds of driving
forces: the membrane voltage, the difference of hydrostatic
pressure and the gradient of concentration between the
boundaries of the membrane. The equations governing the
dynamics of the system are11:

Electrical voltage

du
dτ

 = (i − u) (u
i
 − fc) [ 

1
1 − fc

 ln
(i − u) (f0 − fc)
(u − ifc)(1 − f0)

 − 

             fy0 kd (σu − p) ]

Hydrostatic pressure

dp
dτ

 = kt kd (σ u − p)

where u and i are the voltage and electrical current imposed
accross the membrane, respectively; p is the hydrostatic
pressure difference arising from the difference of the levels
of the solutions, and τ is time. The parameters have the same
meaning and values given in elsewhere11, namely: ratio of
concentrations, fc = 0.1; sign of fixed charges, σ = -1;
drift-parameter, kd = 0.1; time-parameter, kt = 1; and the
electrical membrane resistance at vanishing volume flux
f0 = 0.2558. All variables and parameters in the above
equations are in dimensionless form.

In most studies on oscillations in membrane systems,
both experimental and theoretical, the electrical current
applied through the membrane is constant. However, there
exist experimental evidence in artificial and biological
membranes9,12,13 showing complex dynamics other than
simple P1 oscillations, such as bursting, quasi-periodicity
and chaos, when a periodic stimulating current is applied
across the membrane. aiming at reproducing this complex

behavior observed experimentally we have added a sinusoi-
dal forcing term in the electric current, namely:

i = iDC + A sin(ωτ)

where A is the amplitude and ω is the frequency of the
superimposed AC current, respectively. The analysis of this
driven system requires necessarily the reconstruction of the
attractor from the time series, because only two dynamical
variables are directly accessible. In order to avoid this we
have transformed the above driven system into an
autonomous one adding the following two equations:

dφ
dτ

 = ν

dν
dτ

 = −ωφ

whose solution with proper initial conditions, namely
φ(0) = 0, is the forcing term in the current, i.e. φ = Asin (ωτ).
This new four equation autonomous system is equivalent
to the original one and allows the computation of
dimensions and Lyapunov exponents without the
reconstruction of the attractor. The frequency ω was used
as control bifurcation parameter.

Results and Discussion

The model equations exhibit various types of oscillatory
responses in the membrane potential as the frequency ω of
the periodic stimulation (AC current), superimposed on the
DC current, is varied. The behavior goes from periodic to
bursting via quasi-periodicity. Thus in the range 0.86 ≤ ω
≤ 1.0 the system displays periodic behavior (P1), Fig. 1.
This periodic behavior is confirmed quantitatively by its
maximum Lyapunov exponent equal to zero (indicating
that the limit cycle conserves its information in time), its
single main frequency (0.0156) in the power spectrum and
its correlation dimension equal to one.

At frequencies below 0.85 the system shows quasi-pe-
riodicity. The transition from quasi-periodicity to limit
cycle occurs in a somewhat unusual way. Normally one
would expect a torus (secondary Hopf) bifurcation where
two Floquet multipliers simultaneously intersect the unit
circle in the plane of complex numbers. In fact, a torus
bifurcation occurs at a frequency of ω = 1.03, as determined
using the program package CONT14. At ω = 0.8525, how-
ever, the period-one limit cycle undergoes a saddle-node
bifurcation where one non-trivial floquet multiplier inter-
sects the unit circle at 1. It therefore looses stability by
collision with an unstable limit cycle. This saddle-node
bifurcation of limit cycles collides with a torus in analogy
to the well-known sniper-bifurcation where a saddle-node
of stationary states collides with a limit cycle15. As a
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con se quen ce the mo du la ti on pe ri od of the qua si pe ri o dic
os cil la ti ons ap pro a ches in fi nity as the for cing fre quency is
in cre a sed to wards the cri ti cal va lue of ω = 0.8525, Fig. 2.
The emer ging to rus is des pic ted in Fig. 3. The qua si pe ri o -
dic sta te is con fir med by the po wer spec trum and the re turn
map. In the first one it is pos si ble to ob ser ve two main fre -
quen ci es in non-integer ra tio, in the se cond one it is a clo sed 
cur ve is ob ta i ned, Fig. 4. Both fe a tu res, along with a ca pa -
city di men si on clo se to 2.00 and a ma xi mum Lya pu nov ex -
po nent equal to zero, con firm qua si pe ri o di city. With a
furt her de cre a se of the fre quency, ω < 5 x 10-3, the systems 
dyna mics switch to burst type os cil la ti ons. Such an evo -
lu ti on ma ni fests it self on the pha se por tra it and the Po -
in ca ré sec ti on as an in cre a se of the glo bal size of the

to rus at the ex pen se of the size of its in ner part which
shrinks to a thin tube. On the po wer spec tra, this sce na rio is
as so ci a ted with a de cre a se of the se con dary fre quency,
which me ans that the thin ner the cen ter hole, the lar ger the
du ra ti on of time spent by the tra jec tory in si de the hole. As a
con se quen ce, the time se ri es dis plays lar ger and lar ger win -
dows of ne arly sta ti o nary be ha vi or, Fig. 5. In Fig. 6, the
win dow length of the ne arly sta ti o nary sta tes as func ti on of
the dri ving fre quency is shown.

The res pon ses of the se mo del equa ti ons to the si nu so i -
dal sti mu la ti on have clo se si mi la ri ti es with ex pe ri men tal
re sults re por ted pre vi ously for both ar ti fi ci al and bi o lo gi cal 
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Fi gu re 2. Incre a se of mo du la ti on pe ri od clo se to li mit po int for the
same pa ra me ters va lu es gi ven in Fig. 1.

Fi gu re 1. Time se rie of mem bra ne po ten ti al for DC cur rent in ten sity
iCD = 500, AC cur rent am pli tu de A = 25 and fre quency ω = 0.90.

Fi gu re 4. The re turn map of the at trac tor in Fig. 3 shows a clo sed cur -
ve as would be ex pec ted for a qua si pe ri o dic at trac tor.

Fi gu re 3. The at trac tor sho wing a to rus struc tu re typi cal for qua si pe -

ri o di city. Pa ra me ters va lu es gi ven in Fig. 1 ex cept ω = 0.25.



membranes under similar conditions. The rhythm of
autonomous biological oscillators can be markedly affected
by periodic perturbation. Thus, this forcing can lead to
quasiperiodicity, intermittency, chaos and bursting type
oscillations. Many nerve cells in both vertebrate and inver-
tebrate nervous systems display the behavior known as
bursting. This consists of the generation of membrane
action potentials in regular sequences of “bursts” which are
separated by periods of inactivity during which the cell
membrane may be hyperpolarized. Among the more com-
monly studied nerve cells which display this behavior are
abdominal ganglion cells of molluscs16,17, cardiac pace-

maker, stomatogastic ganglion cells of crustacea18,19, and
electrical activity in pancreatic β-cells20. Bursting is impor-
tant for two reasons21. First, it is a relatively simple neural
pattern and yet one which is involved in the control of many
physiological and behavioral activities such as blood circu-
lation, respiration, mastication and locomotion. Second,
nerve cells involved in epileptic seizure activity have been
observed to burst during interictal (i.e. between seizures)
states.

Finally, it is important to stress that a knowledge of the
mechanisms underlying this complex behavior may lead to
an increased understanding of the basic physico-chemical
phenomena that occur during biological membrane oscilla-
tions.
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