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The Annonaceae family of plants is one of the most anatomically and structurally uniform 
families. Chemotaxonomy is a common practice to determine the chemical patterns within these 
families at different phylogenetic levels. The aim of this study was to build a dataset of all the 
secondary metabolites isolated within the Annonaceae family and to perform the respective 
chemotaxonomic analysis using self-organizing maps (SOMs). This dataset is composed of 
5321 botanical occurrences and 1860 unique molecules present in all subfamilies of the Annonaceae. 
Diterpenes account for 366 unique compounds and 533 botanical occurrences seen in both 
Annonoideae and Malmeoideae subfamilies. The Annoneae, Xylopieae and Miliuseae tribes had 
the highest number of botanical occurrences and were therefore selected for the analysis. Molecular 
descriptors of the diterpenes and their respective botanical occurrences were used to generate the 
SOMs. These SOMs demonstrated clear and indicative tribe separations, with a match rate higher 
than 70%. Our results corroborate with the morphological and molecular data. These models can 
be used to predict the phylogenetic location of certain diterpenes and to accelerate the research of 
Annonaceae secondary metabolites and their biological potentials.
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Introduction

The Annonaceae family was first described by Antoine 
Laurent de Jussieu in 1789 and is known for its striking 
anatomical and structural uniformity. The family is very 
consistent morphologically, with a unique primitive group 
of angiosperms providing easy identification.1-4

Two recent studies relevantly discuss the phylogenetic 
classification of the Annonaceae family. The first 
study carried out by Chatrou et al.5 used eight plastid 
markers and representatives of 94 genera to formally and 
scientifically classify the Annonaceae into four subfamilies: 
Anaxagoreoideae, Ambavioideae, Annonoideae and 
Malmeoideae. The two largest subfamilies, Annonoideae 
and Malmeoideae, were divided into 14 tribes. The second 
study was conducted by Guo et al.,6 and considered the 
phylogenetics of the Annonaceae based on a super matrix 

of eight chloroplast loci and 749 accessions representing 
705 species (29% of ca. 2,400 species of 105 genres; 98% 
of 107 genres currently accepted). This matrix included 
almost four times more species as well as representatives 
of 15 additional genera compared to the first large study 
of phylogenetic importance by Chatrou et al.5

In addition to rebuilding the most comprehensive 
Annonaceae evolutionary tree, Guo et al.6 also determined the 
phylogenetic position of five genera, Bocageae, Boutiquea, 
Cardiopetalum, Duckeanthus and Phoenicanthus, 
that were not included in any previous phylogenetic 
reconstruction. Their work assessed the monophyletic 
status and phylogenetic relationships within each major 
clade highlighting possible non-monophylides of genera 
and evaluating alternative resolutions for nomenclatural 
problems. Additionally, they identified and discussed 
unresolved problems such as the phylogenetic location and 
taxonomy of two genera, Froesiodendron and Melodorum, 
which have not yet been sampled. Finally, they provided 
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an updated view of the genera currently recognized in the 
family using their wealth of species.

Overall, Guo et al.6 reorganized the phylogenetics 
and taxonomy of Annonaceae and concluded their study 
stating that the family contains four subfamilies, 15 tribes, 
107 genera and 2400 species.

Annonaceae are very important economically given 
the multitude of ways the derivatives are used; the fruits 
are used in cooking and the production of ropes, the 
great diversity of chemical compounds shown to have 
pharmacological activities inspire new medicines, and 
the wood that is both light and durable.7-9 These chemical 
compounds, also known as secondary metabolites, have 
great structural diversity in this family and represent many 
chemical classes including but not limited to alkaloids, 
terpenes, acetogenins, and steroids.10-12

One of the most common classes of Annonaceae is the 
terpenes. Terpenes are a very diverse class of substances and 
in addition to their important natural defense mechanisms 
in plants, terpenes display several therapeutic uses for 
humans.9,13

In the natural biosynthetic route, terpenes are formed 
from isoprene units, which are considered the basic units 
for the formation of both terpenes and steroids. Subclasses 
of terpenes include monoterpenes (two isoprene units, 
10 carbons in their structure), sesquiterpenes (15 carbons), 
diterpenes (20 carbons) and triterpenes (30 carbons).9,14

The information gathered from chemical structures of 
both different species and genera has been and continues 
to be used in chemotaxonomy, that is, to determine the 
chemical phylogenetic patterns of a given family.15-17 For 
chemotaxonomy studies, it is common practice to use 
machine learning with either supervised or unsupervised 
algorithms. A few examples of these machine learning 
techniques include neural networks (NN), support vector 
machine (SVM) and k-nearest neighbors (k-NN).15-17

Self-organizing maps (SOMs), which were developed 
by Kohonen,18 are the main algorithm used in this 
study. A SOM is an unsupervised neural network that 
recognizes patterns and performs groupings based on 
exploratory analysis of the input data to generate non-linear 
relationships.18-20 The SOM learning phase is competitive 
as there is no convergence or minimization criteria, and 
it works with a defined number of iterations and weight 
adjustments. In addition, each variable is mapped in a finite 
space of neurons organized in a typically two-dimensional 
arrangement (Kohonen map).19-21

In order to generate the SOM model, the model 
must first be trained on a portion of the established data 
previously separated for training. Then, the second set 
called the test set evaluates the training of the model. 

Using the results from the test set evaluation, we then 
isolate models capable of correctly mapping the test set, 
since the test data instances are not present in the training 
data.20-24

Vesanto et al.25 created a unified distance matrix 
(U-matrix) that uses Euclidean distances to further analyze 
the SOM. In this matrix, it is possible to better visualize 
the possible groupings of the analyzed data.25-27

The goal of this study is to compile and integrate 
secondary metabolites isolated from Annonaceae into one 
curated dataset and to perform a chemotaxonomic analysis 
of diterpenes.

Results and Discussion

We collected and processed all Web of Science-indexed 
research papers published between 1970 and 2019 to 
create a database of secondary metabolites isolated 
from Annonaceae, except for the acetogenin class that is 
exclusive to this family. As seen in Figure 1, the interest 
in studying the Annonaceae plants has grown over time. 
One explanation for this growth is the abundant and diverse 
biological activity of the Annonaceae that comes from the 
structural diversity of the secondary metabolites. Alkaloids, 
for example, exhibited a wide variety of pharmacological 
activities and have been clinically studied for the treatment 
of cancer, Parkinson’s disease, cardiovascular diseases, and 
various viral infections.1-4,8,28,29

Our database consisted of 5321 botanical occurrences 
and 1860 unique molecules present in all subfamilies, 
12 tribes, 64 genera and 380 species of the Annonaceae. 
Terpenes and alkaloids are the largest classes present in 
these plants (Figure 2).

It is important to note that although Annonaceae has 
107  genera and 2400 species, only a small percentage 
of them have been studied chemically and therefore our 
database was considered comprehensive.

Figure 1. Distribution of published phytochemical studies of the 
Annonaceae plant family over time.
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The alkaloids present in the Annonaceae are 
isoquinolines but the biosynthetic origins of the main 
nuclei occurring in the Annonaceae are the simple 
isoquinoline, proaporphine, aporphine, benzylisoquinoline, 
protoberberine, and phenanthrene.30,31

Terpenes, the second most common class in Annonaceae, 
occur in all subclasses (mono-, di-, sesqui-, and triterpenes), 
with the diterpenes being the most abundant. The most 
frequent diterpenes are kaurene, trachylobane, labdane, 
and atisane, wherein kaurane is the most common. Figure 3 
shows the skeletons of some of the most present alkaloids 
and diterpenes in this family.

Once the database was compiled and the classes and 
skeletons of the secondary metabolites most present in 
Annonaceae were identified, the chemotaxonomic analysis 
was performed.

Chemotaxonomy is defined as a taxonomic classification 
method based on the chemical similarity of compounds 
identified in the organisms/plants being classified.32 Thus, 
we sought to investigate chemical molecules that serve as 
taxonomic markers of the Annonaceae.

Given the assortment of the secondary metabolites 
collected, the terpenes were selected for the chemotaxonomic 
studies because they were the predominant class (46% 
of metabolites). As mentioned earlier, terpenes can be 
classified into mono-, di-, sesqui-, and triterpenes.

Among these four subclasses, about 50% of the terpenes 
were diterpenes. Annonaceae diterpenes have promising 
anti-inflammatory activity, making compounds of this class 
excellent candidates for clinical trials in anti-inflammatory 
therapy.33

Diterpenes represented a total of 366 unique chemical 
structures and 533 botanical occurrences; a botanical 
occurrence indicates that the compounds are present in 
several species.

These 533 botanical occurrences are distributed in two 
subfamilies, Annonoideae and Malmeoideae, which are the 
largest subfamilies of the Annonaceae and are distributed 
in 8 tribes, 13 genera and 50 species. The phylogenetic 
classification of the Annonaceae family proposed by 
Guo et al.6 was utilized.

The three tribes with the highest number of botanical 
occurrences and molecules were then selected for the 
self-organizing neural maps, as the high number of 
diterpenes allows for the recognition of chemical pattern 
among the tribes. These tribes were Annoneae, Xylopieae 
and Miliuseae, and Table 1 contains the botanical 
characteristics and quantities of the selected molecules.

The genera represented in each selected tribe are: 
Annona (Annoneae), Xylopia (Xylopieae), Polyalthia, 
Pseudouvaria, Piptostigma and Greenwayodendron 
(Malmeoideae). Malmeoideae is the most studied genera 
of these tribes.

Figure 2. Secondary metabolite classes isolated from the Annonaceae 
family.

Table 1. Botanical characteristics and occurrences of the diterpenes of the tribes Annoneae, Xylopieae and Miliuseae

Tribe Subfamily Genus Species Diterpenes Occurrences

Annoneae Annonoideae 1 11 150 179

Xylopieae Annonoideae 1 14 179 241

Miliuseae Malmeoideae 4 13 95 101

       Total: 521

Figure 3. Skeletons of the most abundant alkaloids and diterpenes in the 
Annonaceae family.
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For the 521 molecules of the three selected tribes, 
molecular descriptors were calculated using the 
DRAGON  7.0 software,34 which has 5270 descriptors 
organized in 30 logic blocks. From these three blocks 
of descriptors, 60 molecular descriptors were selected to 
consider ring descriptors, functional groups, and fragments 
of central atoms. 

The botanical occurrences were classified in the 
three selected tribes and the values of the 60 molecular 
descriptors were used as input data in the SOM Toolbox 
software.25 The self-organized matrix of diterpenes was 
then generated, classified into the three aforementioned 
tribes according to the chemical similarity between them. 
Then, the classification generated was compared with the 
phylogenetic classification proposed by Guo et al.6 The 
phylogenetic classification of Guo et al.6 can be seen in 
Figure 4.

In the generated maps, the hit rate using the two types 
of DRAGON 7.0 descriptors was > 77%. Thus, the 5-fold 
validation was performed for the generated SOM model, in 
which the diterpenes were divided into five training groups 

and five test groups, always maintaining the proportion 
of molecules from the three tribes (Annoneae, Xylopieae 
and Miliuseae). The results of the validation are described 
in Table 2.

Table 2, like Table 3, also describes the accuracy 
values for each training and test. Accuracy provides us 
with information about the overall performance of the 
model, indicating the overall hit rate. The values of this 
metric vary between 0 and 1, and the closer to 1 it indicates 
that the model is getting more correct in its classification 
of molecules in terms of their tribes, that is, correctly 
classifying a molecule of the Annoneae tribe in the 
Annoneae tribe. Models with an accuracy greater than 0.70 
are already considered models of excellent performance.24

After analyzing Table 2, it is observed that the hit rate 
was overall > 70%, with the best hit rate of 95% for the 
Miliuseae tribe. The average hit rate of the test sets was 
80% and is very close to the average hit rate for the training, 
which was 83%, revealing not only the good predictive 
power of the model, but that the model is robust. The 
applicability domain was also analyzed and was > 99% of 
the predictions of the test sets.

To verify the tribes dependence on chemical similarity 
and the ability to separate them accordingly, chemotaxonomy 
analysis was performed using other machine learning 
algorithms such as the support vector machine (SVM) 
and the k-nearest neighbors’ algorithm k-NN, in addition 
to neural maps generated using the fingerprint descriptors 
calculated by the DRAGON 7.0 software. The results are 
shown in Table 3 for this SOM analysis of the Annoneae, 
Xylopieae and Miliuseae tribes and like those in Table 2, 
the hit rates are excellent.

To visualize the generated SOM, we utilize a U-matrix 
and display it alongside a principal component analysis 
(PCA) which was developed from the correlation matrix 
of the database used in the generation of SOM. PCA is 
measured using eigenvectors with higher eigenvalues. In 

Figure 4. Phylogenetic diagram of the Annonaceae family (adapted from 
Guo et al.6).

Table 2. Accuracy statistics of the training and tests groups of the 5-fold cross-validation of the self-organizing map from the Annoneae, Xylopieae and 
Miliuseae tribes

Tribe Training 1 Training 2 Training 3 Training 4 Training 5 Average

Annoneae 0.89 0.90 0.80 0.80 0.78 0.83

Miliuseae 0.90 0.86 0.86 0.90 0.90 0.88

Xylopieae 0.77 0.76 0.85 0.86 0.85 0.82

Accuracy 0.83 0.83 0.83 0.84 0.84 0.83

Tribe Test 1 Test 2 Test 3 Test 4 Test 5 Average

Annoneae 0.83 0.70 0.77 0.86 0.70 0.77

Miliuseae 0.90 0.94 0.85 0.95 0.80 0.88

Xylopieae 0.71 0.89 0.83 0.67 0.85 0.79

Accuracy 0.79 0.83 0.81 0.79 0.78 0.80
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the projection of the PCA, the neighboring map units are 
connected by lines to make the visualization of the data on 
the map more clear and defined. The PCA performed has 
an explained variance of 37.04%, that is, using only two 
variables it is possible to visualize one third of the entire 
variance.

Figure 5 shows the U-matrix of the generated SOM 
where we can see a chemical pattern separating the three 
tribes Annoneae (blue), Xylopieae (red) and Miliuseae 
(green), which are best observed in the principal component 
analysis chart (PCA).

We can see that the Miliuseae tribe, despite having 
the fewest number of diterpenes and, consequently, the 
fewest botanical occurrences, was the tribe with the best 
hit rates (greater than 85% in all algorithms and different 

descriptors in SOM) and is more structurally distant from 
the Annoneae and Xylopieae tribes, corroborating Guo’s6 
phylogenetic classification, seen in Figure 4.

Annoneae and Xyopieae are part of the same subfamily, 
Annonoideae, explaining the proximity of the two tribes 
in the SOM, while Miliuseae is part of the Malmeoideae 
subfamily, and is therefore further away. When observing 
the diterpenes present in the tribes present in the SOM 
(Figure 6), we can see that each tribe has a higher frequency 
of a certain subtype of diterpene. The subtypes present in 
the Annoneae and Xylopieae tribes, although different, 
maintain a certain chemical similarity in their skeletons, 
explaining once again the approximation of these two 
tribes in the SOM.

Figure 6 shows some of the isolated diterpenes in 
each of the analyzed tribes, focusing on the most frequent 
skeletons identified from each tribe. The Miliuseae tribe 
has a clerodane subclass of diterpenes. The clerodane 
diterpene is able to undergo structural changes and generate 
some subtypes,35 and the kolava subtype is present in 
the Miliuseae tribe. The Annoneae and Xylopieae tribes 
have kaurane and trachylobane diterpenes, respectively. 
Although different, these subclasses have similarities 
in their chemical skeletons, even further supporting the 
closeness of the two tribes in the SOM.

The most significant descriptors in the separation of 
each cluster (each tribe in SOM) are represented in Figure 7. 
For the Annoneae tribe, the descriptors that presented a high 
value were (i) NROH, which describes hydroxyl groups 
(OH) linked to aliphatic groups, (ii) nOHp descriptor that 
points to primary alcohols, (iii) C-006, which indicates 
CH2 carbons attached to a radical and that radical attached 
to an OH, and (iv) the descriptor O-056 that describes 
the alcohol function. Thus, these descriptors report that 
the diterpenes of this tribe are distinguished by the large 
number of hydroxyls in their chemical structure (Figure 6).

For the Xylopieae tribe, the most representative 
descriptors were nCIR, which indicates the number of 
circuits (rings/cycles connected to each other) present in 
the molecule, the RFD descriptor of ring melting density, 

Figure 5. Visualization of the SOM of Annonaceae diterpenes data. 
In the upper corner we have the U-matrix. The left U-matrix does not 
identify the tribes while the right U-matrix identifies the tribes by color; 
Annoneae is blue, Xylopieae is red, and Miliuseae is green. The values 
shown on the scale between the two U-matrices represent the values of 
the molecular descriptors of the diterpenes, varying between 0.603 and 
5.96. These values were used to group the diterpenes by tribes. At the 
bottom, we have the PCA projection of the SOM measured by its two 
eigenvectors with higher eigenvalues. The tribes were plotted using the 
same identification colors as the U-matrix.

Table 3. Summary of test averages corresponding to 5-fold cross-validation using the different machine learning algorithms and self-organizing map 
(SOM) with the fingerprint descriptors for the Annoneae, Xylopieae and Miliuseae tribes

Tribe
SOM molecular descriptors 

average
SOM fingerprint descriptors 

average
SVM average k-NN average

Annoneae 0.766 0.77 0.70 0.70

Miliuseae 0.88 0.92 0.81 0.85

Xylopieae 0.79 0.89 0.87 0.81

Accuracy 0.80 0.85 0.80 0.78

SVM: support vector machine; k-NN: k-nearest neighbors’ algorithm.
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Figure 6. Diterpenes of the most present subtypes in the Annoneae, Xylopieae, and Miliuseae tribes.

Figure 7. The most significant descriptors for the Annoneae, Xylopieae and Miliuseae tribes. In (a) we have the U-matrix for the four most significant 
descriptors in the grouping of the diterpenes of the Annoneae tribe. In (b), the U-matrix is shown for the three most significant descriptors of the Xylopieae 
tribe. (c) Shows the U-matrix for the three most significant descriptors of the Miliuseae tribe. Finally, in (d) we have the U-matrix of the self-organizing 
map generated in the study, with the upper U-matrix not identifying the tribes and the lower U-matrix identifying the tribes by color; Annoneae is blue, 
Xylopieae is red, and Miliuseae is green.
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and the RCI descriptor that provides information about 
the ring complexity of the molecule. These descriptors 
point to the presence of molecules with a large number 
of interconnected rings/cycles; as seen in Figure 6, the 
diterpenes of this tribe have many interconnected rings/
cycles and a certain degree of complexity.

For the Miliuseae tribe, the descriptors with the 
highest values were nConj, a descriptor that expresses the 
presence of non-aromatic C conjugates (sp2), NNRS, the 
normalized number of ring system, which accounts for 
both the ratio between the number of ring systems (NRS) 
and the cyclomatic number (nCIC, discriminates cyclic 
compounds from acyclics) to provide information related to 
the presence of aromatic rings in the chemical structure, and 
lastly the ARR descriptor. The ARR, aromatic ratio, is the 
ratio of the number of aromatic bonds to the total number 
of bonds in the molecule. These descriptors reveal that the 
diterpenes of this tribe have an aromatic ring and conjugated 
non-aromatic bonds, which can also be seen in Figure 6.

An article by Scotti et al.,15 constructed a SOM with 
nuclear magnetic resonance (NMR) data of 118 diterpenes 
from three genera of the Annonaceae, the genera Xylopia, 
Polyalthia and Annona. The SOM was able to separate 
the diterpenes of the three genera with the NMR data and 
specific chemical displacement values of 13C were observed 
for the skeletal carbons of each type of diterpenes of each 
genus. Kauranes skeletons were found for Annona, while 
trachylobans were found for Xylopia and clerodanes were 
found for Polyalthia.

Review papers concerning the Annona genus and some 
of its species have suggested that ent-kauranes are the most 
abundant diterpenes.36-38 A review by Barbosa and Vega,9 
highlights that diterpenes are the second most common 
class of secondary metabolites in species of the Xylopia 
genus, with kaurane, labdane, atisane and trachylobane 
diterpenes being the most frequent. Of these, trachylobanes 
are considered as chemotaxonomic markers of Xylopia as 
they are the most abundant in Xylopia and are difficult to 
find elsewhere in Annonaceae.9,39 

The four genera selected from the Miliuseae tribe 
are those with the most phytochemical studies, with 
the Polyalthia and Pseuduvaria genera being the most 
chemically and biologically studied of the tribe. As in the 
other genera, there are studies in the literature that show that 
the most isolated diterpenes of Polyalthia and Pseuduvaria 
species are clerodanes.40-43

Conclusions

The literature corroborates the information obtained 
in this study. In this way, this study of Annonaceae 

diterpenes establishes a way to separate the Annoneae, 
Xylopieae and Miliuseae tribes in accordance with the 
family’s morphological and taxonomic separation. This 
phenomenon makes it possible to predict the location 
of a certain diterpene in the Annoneae, Xylopieae and 
Miliuseae tribes of the Annonaceae and to search for 
these secondary metabolites and their biological potentials 
more effectively.

Methodology

Construction of the Annonaceae database

The articles used for the construction of the database 
were selected by means of an electronic search in the Web 
of Science research base, and were composed of studies 
and literature reviews on secondary metabolites isolated in 
plants of the Annonaceae. The following terms were used in 
the search for scientific articles: “Annonaceae”, “secondary 
metabolites”, “terpenes”, “alkaloids”, “flavonoids”. All 
secondary metabolites, the species from which they were 
isolated, and the geographic locations will be registered 
on the SISTEMATX44 web tool and developed by the 
Chemistry Laboratory of the Postgraduate Course on 
Natural and Bioactive Synthetic Products.45

Obtaining structures in three dimensions of compounds

For all structures, SMILES codes were used as 
input data for Marvin v. 19.27.0.46 It was also used the 
Standardizer software47 which made it possible to convert 
the various chemical structures into personalized canonical 
representations. This standardization is extremely important 
to create libraries of consistent compounds, in addition to 
canonizing the structures, adding hydrogens, aromatizing 
molecules, generating the 3D structures, and saving the 
compounds in SDF format.

Obtaining the molecular descriptors

Molecular descriptors are used to calculate the 
physicochemical properties of the molecules of each set 
of molecules. To obtain the molecular descriptors, the 
DRAGON 7.0 program34 was used.

The DRAGON 7.0 software34 can calculate 5270 
molecular descriptors, covering several approaches. These 
molecular descriptors are arranged in 30 logic blocks.34 
Of the 30 blocks of molecular descriptors available in 
the Dragon 7.0 software,34 only the ring descriptors, 
functional groups, and fragments of central atoms blocks 
were selected.
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Pre-processing of data

In this step, the variables/descriptors were selected. 
This selection tactic is used to identify those descriptors 
that are most important for the grouping of the diterpenes 
and in this case were mostly related to the tribes. The 
selection of descriptors is an important step that must be 
carried out before the generation of the model, since it is 
useful for reducing the dimensionality of the data, helping 
to obtain a generic and not over-adjusted model, reducing 
computational cost, simplifying extraction processes 
and transformation of data, and further simplifying the 
presentation and demonstration of data.48 In short, this step 
helps to reduce overfitting, increases the accuracy of the 
model, and reduces training time. 

The pre-treatment criteria removed descriptors that 
had equal values in the series, ones that only a different 
value, and ones that had a correlation greater than 0.99. 
The majority of descriptors end up being removed, as many 
were inter-correlated, such that the independent variable 
remained the most correlated with the dependent variable.

Self-organizing maps (SOMs)

For the realization of the neural maps, the selection 
of molecular descriptors was performed for the bank of 
isolated molecules of the Annonaceae. The functional 
group, central atom, and ring descriptors were selected. 
Then, the constant variables for each block of descriptors 
and those with a different value in the series were 
excluded.

The molecular descriptors selected were analyzed with 
SOMs in Matlab 6.5 and SOM Toolbox 2.0.25,26,49 The SOM 
Toolbox tool is a set of Matlab functions that can be used 
for the elaboration and implementation of neural networks, 
since it contains functions for the creation, visualization, 
and analysis of self-organizing maps. The data set was 
presented to the network before any adjustments were 
made. Subsequently, the data group was partitioned 
according to the regions of the weight vectors of the map, 
in each training stage. Then, the correct prediction of these 
sets and the total correct predictions of the compounds 
were evaluated. In the most relevant models, the set was 
divided into training and test sets to assess the forecasting 
capacity. Training and test performance were assessed 
by calculating the proportion of the number of samples 
correctly classified by SOM. For each map, 5 cross-
validations were performed, being partitioned into 80% 
training and 20% testing. In the SOM, sites containing 
molecules for each descriptor were identified to highlight 
existing chemical patterns.

SVM and k-NN models

Knime 3.6.2 software50 was used to perform all the 
following analyzes. The class descriptors and variables 
were imported from the Dragon 7.0 software34 and, for 
each, the data was divided into the “partitioning” node 
with the “stratified sample” option to create a training set 
and a set of tests, covering 80 and 20% of the compounds, 
respectively. Although the compounds were selected at 
random, the same proportion of active and inactive samples 
was maintained in both sets. Two models were generated 
using the support vector machine (SVM) algorithm51 and 
the K-nearest neighbors’ algorithm (k-NN).52 An external 
cross-validation was modeled 5 times.

SVM is a supervised machine learning algorithm that 
analyzes data and recognizes patterns.51,53 The parameters 
selected for the SMV for all the models generated were 
polynomials, with power 1.0, bias 1.0, and range 1.0.

k-NN consists of instance-based machine learning as the 
function and is approximated only locally (neighbors) so the 
entire calculation is postponed until classification.53,54 It is a 
technique that gives weight to the contributions of neighbors, 
so that the closest neighbors contribute more to the average 
than the more distant ones.52-54 The parameters selected for 
the SVM for all the generated models were k = 3.
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