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A potential eco-friendly method without organic solvents is presented by integrating a 
chromatographic fingerprint and multivariate control chart based on Q residuals to differentiate 
grape juices from different farming practices. The sample preparation was only water dilution, and 
the mobile phase was water acidified with sulfuric acid, which can be readily neutralized before 
its disposal. The proposed method is shown to be a simple way to distinguish between organic and 
non-organic grape juices in a non-target way, successfully evaluating an external validation data 
set, where organic and non-organic samples were correctly assigned. Through the chromatographic 
profile, it is possible to suggest that one of the species responsible for this distinction may be from 
the anthocyanins class.
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Introduction

Grapes and their derivatives present health benefits, 
and their consumption has increased over the years.1 With 
an increased focus on healthy products, the production 
and consumption of organic foods, obtained from specific 
farming practices, have risen significantly in Brazil (regulated 
by the Brazilian Law 10.831 of December 23, 2003),2 and 
the production of organic grapes being among the five crops 
with the largest area of cultivation in the world.3 

The organic farming practices purpose is to offer healthy 
products, free from intentional contaminants, preserving the 
biological diversity of natural ecosystems, with responsible 
use of water, soil, air, and other natural resources, always 
considering sustainability and respecting social and cultural 
relations.2 Even more, agriculture is a significant contributor 
to global greenhouse gas emissions. Organic farming 
practices might reduce emissions through decreased use of 
farm inputs and increased soil carbon sequestration.4

In line with the consumption increases, benefits 
provided by grapes such as biological activities, 

antioxidant, and anticancer properties,5 consequently, 
increase the demand for quality control of grape and their 
products. On the other hand, consumers pay an extra price 
for food products with a declaration of “organic” on the 
label, so using analytical methodologies that differentiate 
grape juices from different farmer practices may represent 
a suitable approach.

Organic grape juices were investigated under 
antioxidant capacity, physicochemical properties, chemical 
composition,3,5-8 and anthocyanin content.9 Moreover, 
although the not consensual on the differences in chemical 
markers and antioxidant activity for grape juice produced 
from different farming systems, some works pointed 
that grape juice under different crop systems presented a 
variation in its chemical compounds.7,8 In this scenario, 
the evaluation of organic foods, produced under-regulated 
systems, appears as a trend.

The qualitative methods can identify adulterations in 
products and are currently on the rise mainly due to their 
screening potential. This strategy is named non-target 
analysis since the fingerprint of the sample is employed.10 
Moreover, non-target analysis gaining more space in food 
quality control,10 while the fingerprint can be obtained by 
different techniques, depending on the availability and 
interest of the study. 
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From the non-target context, molecular spectroscopic 
such as middle infrared,11,12 or ultraviolet-visible (UV-Vis),13 
have been reported. However, the high-performance liquid 
chromatography (HPLC) for fingerprint in food matrices 
has advantages over these other techniques,14 such as 
bringing significant marker results that get compositional 
information. Furthermore, by coupling HPLC with 
chemometrics, food adulteration is successfully detected, 
and the quality can be assessed.14 

Among chemometric tools for food evaluation, 
unsupervised or exploratory ones like principal component 
analysis (PCA) are usually employed in food industries for 
quality and process monitoring.15 From this unsupervised 
tool, it is possible to implement a criterion for supervision, 
for example, by using Q residuals. 

In this context, this work aims to distinguish grape 
juice from different farming systems by integrating 
HPLC fingerprinting and multivariate control charts in 
a non-target analysis. Nonetheless, food samples from 
organic and conventional farming practices have been 
investigated using several analytical techniques, such as 
proton nuclear magnetic resonance (1H NMR),16,17 isotope 
ratio mass spectrometry (IRMS),17-19 near-infrared (NIR) 
spectroscopy,20,21 and UV-Vis spectroscopy.22

Molecular spectroscopy such as NIR and UV-Vis is 
simpler but has a low resolution and lacks selectivity. An 
advantage of 1H NMR refers to all 1H nucleus in a sample 
have the same sensitivity, then for this spectroscopy, the 
reproducibility is high. On the other hand, the 1H NMR 
spectroscopic dispersion is limited (about 12 ppm). This 
fact will imply overlapped signals (especially with complex 
samples). Furthermore, the signals for compounds in a 
lower concentration are often weak and unclear, even if 
those signals do not overlap with other ones.23 

Concerning IRMS, the most significant property in this 
technique for differentiating organic and non-organic foods 
is the 15N/14N ratio, resulting from the recycling of organic 
material as fertilizer. However, two processes mimic recycling 
fertilization with manure and, in the opposite direction, the 
cultivation of nitrogen-fixing plants such as legumes.24 In 
this scenario, HPLC analysis, a versatile technique with high 
selectivity, allows establishing a fingerprint for samples. A 
promising method for food identification produced under 
different farming practices can be proposed when coupling 
HPLC fingerprint and chemometrics. Thus, this work shows 
an application for organic and non-organic grape juice 
evaluation made by HPLC and chemometrics in an eco-
friendly way. The acidified water is employed rather than 
organic solvents as the mobile phase. So, it meets a green 
method that claims to reduce or not to use solvents and which 
the mobile phase can be neutralized before its disposal.

Experimental

Samples

A total of 33 commercial samples of grape juice from 
the Rio Grande do Sul, Brazil, were analyzed, being 
11 different brands (5 organic brands and 6 non-organic 
brands). Three bottles of different batches were purchased 
for each brand, totaling 33 bottles (15 organic and 
18 non-organic samples). An aliquot of 500 μL of grape 
juice was diluted in 1.0 mL of ultrapure water.25

Equipment and analytical procedure

The analysis was performed using an HPLC with a 
diode array detector (DAD) system (Dionex Ultimate 
3000 HPLC, Thermo Scientific, San Jose, CA, USA). The 
chromatographic conditions were defined according to 
Coelho et al.,25 with some modifications. The main ones 
are regarding the separation mechanism (i.e., column type) 
and detection wavelength. An aliquot of 500 μL of grape 
juice was diluted in 1.0 mL of ultrapure water, and 10 μL 
was injected without replicates. The C18 column was 
Hi-Plex H (300 × 7.7 mm) (Agilent, Santa Clara, CA, USA) 
with internal particles of 8.0 μm. The column compartment 
temperature was maintained at 70 °C. The flow rate applied 
was 0.5 mL min−1 with a run time of 17 min. The mobile 
phase was 4.0 mmol L−1 H2SO4 (Synth, Diadema, Brazil) 
in ultrapure water. The detection was carried out at 240 nm.

Chemometrics

The chromatograms were aligned through the icoshift 
algorithm in the Matlab software version R2007b (The 
Mathworks Inc., Natick, MA, USA).26 This algorithm is 
based on an insertion/deletion model to shift intervals 
of chromatograms. It relies on an efficient fast Fourier 
transform, and additional information regarding the 
mathematical steps can be found in Tomasi et al.27 
Furthermore, the code for the icoshift algorithm is free 
available for download.28 

The aligned chromatograms were employed for 
multivariate control charts development. An external 
validation data set was used in this study to check the 
performance of the multivariate control charts based on Q 
residuals. Organic samples were randomly splitting, and 
2/3 were used in a training set and 1/3 used as the external 
validation set. Then, the organic samples in the external 
validation set were not used for the training step. 

Multivariate control charts are the plots of distinct 
parameters, such as Q residuals from PCA analysis. The 
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Q residuals are a lack-of-fit statistic that can be used to 
indicate how well the pre-established model is describing 
the sample, i.e., the Q statistic shows how well each 
sample conforms to the model. It measures the difference, 
or residual, between a sample and its projection into the k 
factors retained in the model. Equation 1 shows how this 
parameter is estimated for the ith sample in X (xi) as the sum 
of squares of each sample (row) of the residual matrix (E):15

  (1)

where ei is the ith row of E, I is the identity matrix of 
appropriate size (n by n), and Pk is the matrix of the k 
loadings vectors retained in the PCA model. 

Results and Discussion

Greening the analytical methods is gaining high interest 
among researchers and these analytical green methods are 
named also as eco-friendly methods. Because of the monetary 
and ecological impact of using large amounts of organic 
solvents and waste disposal, the analytical community is 
directed to implement the principles of green analytical 
chemistry in analytical laboratories and substitute polluting 
analytical methodologies with green ones. Chromatographic 
techniques can be greener in this scenario at all analysis 
steps, from sample collection to separation.29 In this work, 
coupling chromatographic fingerprint and chemometrics 
made it possible to only use dilution for sample preparation. 
Furthermore, acidified water was used as a mobile phase, 
and the result was a successful distinction between organic 
and non-organic grape juices.

The visual inspection of the raw chromatograms 
(Figure 1a) suggests around six peak clusters comprised 
of one to two peaks and variability in retention time across 
samples. Moreover, retention time alignment is crucial as 
a pre-treatment step before applying multivariate tools, 
i.e., the same underlying process must be associated with 
the same variables in all the samples. When this does not 
occur, more components (factors) are required to explain 
the additional variation. Thus, for chromatographic 
applications, the retention time for the same compound 
must be invariant across samples. Without meeting this 
condition, the chemical interpretation of the components 
and/or factors can be compromised.27 Due to this, the 
chromatographic retention time shifts were corrected 
(Figure 1b) using the icoshift algorithm (four intervals 
and the mean of chromatograms as a target). An evident 
correction can be visually observed mainly on peaks for 
nearly 14 and 16 min by comparing Figures 1a and 1b. Only 
1 min was running after the last eluted peak.

On the other hand, 5 to 7 min usually ensures all the 
remaining compounds in the column were eluted. However, 
in this case, the column equilibrium was reached with 
isocratic elution. Moreover, no peaks are present in the 
first 4 min run, which justify this procedure.

By direct observation of the aligned chromatograms, it is 
possible to conclude about organic and non-organic samples 
on retention time 15.7 min, where it was observed a lower 
peak for non-organic samples, and a more intense peak 
for organic ones. However, regarding the chromatogram 
results until 14 min, it is challenging to conclude concerning 
organic or non-organic samples. So, a method was proposed 
here by integrating the chromatographic fingerprint and 
multivariate control chart based on Q residuals in a non-
target analysis. 

The first step to obtaining multivariate control charts 
based on Q residuals is to build a PCA model, using only 
organic samples in the training set. A data set with organic 
and non-organic samples are employed in the future in 
the external validation step. PCA was realized with mean-
centered chromatograms and three principal components 
(PC), representing 96.61% of cumulative variance. The 
results were plotted using Q residuals values against samples 
index (Figure 2), showing efficient discrimination between 
organic and non-organic samples with 99% confidence.

In Figure 2, a clear differentiation can be observed for 
all brands of non-organic juices in the external validation 
data set, effectively distinguishing all non-organic samples 
and evaluating organic ones in the external validation set. 

Figure 1. Raw chromatogram (a) and chromatogram after alignment (b). 
( ) Organic samples, ( ) non-organic samples.
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Control charts based on Q residuals were successfully 
reported, for example, from Raman spectroscopy 
data in the online control of glucose fermentation by 
Saccharomyces  cerevisiae,30 from near-infrared (NIR) 
spectra,15,31 and middle (MIR) spectra15 to the evaluation of 
adulterated freeze-dried açai pulp. Here, the results proved 
that chromatographic fingerprint could be successfully 
integrated to control chart based on Q residuals, in a non-
target way, to evaluate organic and non-organic grape juice.

Although the primary objective drives a non-target 
analysis, a discussion regarding the chemical composition 
possibilities were considered. From the literature, the main 
and most abundant phenolics present in wines and grape 
juices belong to the families of flavonols and phenolic 
acids.6,32-34 In this work, the detection was used at 240 nm 
since many peaks were present (fingerprint fulfilled). 
Moreover, the purpose was fulfilled considering the 
non-target analysis definition (determinations performed 
when potential analytes are not limited in their number 
and origin).35 

 Nonetheless, Dani et al.7 showed that organic grape 
juices presented statistical differences with higher values 
for total polyphenols and resveratrol when compared with 
non-organic grape ones. Polyphenols have a chemical 
structure derived from benzene, coupled to a hydrophilic 
group. Considering how the polyphenolic rings attach, 
they are classified into four families: flavonoids (flavones, 
flavanones, catechins, and anthocyanins), phenolic 

acids, lignans, and stilbenes (resveratrol). Furthermore, 
no differences were observed by Granato et al.6 for 
trans-resveratrol in purple grape juices produced in Brazil 
under different crop systems. Then, based on those 
references,6,7 it can be suggested that the resveratrol was 
not the compound responsible for differentiating organic 
and non-organic grape juices.

Regarding the first chromatographic peaks (around 
4-6 min), they present lower intensities for organic 
grape juices when compared to non-organic grapes ones. 
Vian et al.9 reached that the total content in anthocyanins 
during the ripening of the conventionally-grown grapes 
was significantly higher than that found in the organic 
production. 

Anthocyanins most found in fruits are mainly 
derived from six anthocyanidins: pelargonidin, cyanidin, 
delphinidin, peonidin, pethidine, and malvidin.36 Although 
no differences were achieved for the malvidin-3-glucoside, 
pelargonidin-3-glucoside contents in grape juices produced 
in Brazil under different farming practices.6 Furthermore, 
to reach the anthocyanidin classes in grape juices, 
Li et al.37 and Wang et al.38 employed HPLC with mass 
spectrometry (MS) detection (electrospray ionization  
MS/MS detection). Then, a simple and less selective 
method based on liquid chromatography with detection 
in only one wavelength when coupled with chemometrics 
can achieve valuable information concerning grape 
juice farming practices without a total anthocyanin class 
identification.

Conclusions

An eco-friendly chromatographic method was 
proposed to evaluate grape juice obtained from different 
farming practices. This greenness method is based on 
sample preparation by water dilution and mobile phase 
using acidified water. When coupled with a multivariate 
control chart based on Q residuals, the proposed method 
successfully distinguishes organic and non-organic grape 
juices. 

The proposed method is a simple way to distinguish 
between organic and non-organic grape juices in a non-
target way. Through the chromatography profile, it is 
possible to suggest that the distinction maybe be assigned 
to a compound from the anthocyanins class.
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