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The increasing availability of extensive collections of chemical compounds associated with 
experimental data provides an opportunity to build predictive quantitative structure-activity 
relationship (QSAR) models using machine learning (ML) algorithms. These models can promote 
data-driven decisions and have the potential to speed up the drug discovery process and reduce 
their failure rates. However, many essential aspects of data preparation and modeling are not 
available in any standalone program. Here, we developed an automated framework for the curation 
of chemogenomics data and to develop QSAR models for virtual screening using the open-source 
KoNstanz Information MinEr (KNIME) program. The workflow includes four modules: (i) dataset 
preparation and curation; (ii) chemical space analysis and structure-activity relationships (SAR) 
rules; (iii) modeling; and (iv) virtual screening (VS). As case studies, we applied these workflows 
to four datasets associated with different endpoints. The implemented protocol can efficiently 
curate chemical and biological data in public databases and generates robust QSAR models. We 
provide scientists a simple and guided cheminformatics workbench following the best practices 
widely accepted by the community, in which scientists can adapt to solve their research problems. 
The workflows are freely available for download at GitHub and LabMol web portals.
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Introduction

Quantitative structure-activity relationship (QSAR) 
modeling is a major cheminformatics approach in 
computer-aided drug discovery.1,2 Nowadays, machine 
learning (ML) methods can be used to generate QSAR 
models that accurately predict chemicals and how chemical 
modifications might influence biological properties.2 
In contrast to classical QSAR models that used simple 
multivariate regression approaches to correlate biological 

activity with structure and chemical properties, advanced 
cheminformatics and ML techniques are able to model more 
complex and nonlinear data. ML uses pattern recognition 
algorithms to discern mathematical relationships between 
experimental observations of small molecules and 
extrapolate them to predict the biological properties of 
novel compounds.3,4

One of the primary application areas for ML in drug 
discovery is to predict chemicals lacking of biological 
data.5-8 Over the past decade, there has been a remarkable 
increase in the amount of available bioassay data in 
repositories such as ChEMBL9 and PubChem10 owing to 
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the emergence of new experimental techniques such as 
high-throughput screening (HTS).11,12 This rapid increase 
in publicly available data has allowed the training of ML 
algorithms to guide the development of lead compounds 
in drug discovery as well as in the assessment of chemical 
safety of untested compounds.2

A variety of ML methods such as random forest 
(RF),13 support vector machines (SVM),14 and deep neural 
networks (DNN)15 have been utilized for drug discovery.16 
In particular, ML models can benefit the drug discovery 
process, due to its low cost and ability to screen a large 
number of compounds in a short period of time.4,16,17 
However, the success of ML in cheminformatics requires 
a series of pre-processing steps, such as chemical and 
biological data curation,18-20 dataset balancing, descriptors 
calculation, modeling, validation, statistical analysis, etc.,2 
that can be performed using a wide variety of programming 
languages and computational tools. Additionally, the 
development and implementation of high-quality models 
require that users have a thorough understanding of 
the modeled bioassay data, expert comprehension of 
best practices for model development, validation and 
application,21 and computational skills.

Until this date, many essential aspects of data 
preparation and modeling are not available in a single 
standalone program. Here, we developed an automated 
computational framework to curate and prepare datasets, 
to generate and validate predictive ML models, and to 
perform virtual screening (VS) of chemical libraries using 
the KoNstanz Information MinEr (KNIME) program.22,23 
KNIME is an open-source platform that provides a 
customizable framework for data management and 
modeling through a user-friendly graphical interface.24,25

Results and Discussion

Automated framework

In the current work, we illustrate and describe the 
development of an automated framework to curate, model, 
analyze, and screen chemicals using the KNIME platform. 
In addition, we tested the workflow by developing four 
case studies for the prediction of antiplasmodial and 
antischistosomal activity, as well as cardiotoxicity and 
mutagenicity. Previously, other groups have proposed 
automated26 and semi-automated27 KNIME workflows 
for the development of ML models and cheminformatics 
analysis. Similar workflows28 using the commercial 
Pipeline Pilot29 program have also been published. More 
recently, Java and JavaFX based program was developed 
for the removal of duplicates, activity cliffs, and modeling 

focusing specifically on small datasets.30 However, our 
workflow is the first to integrate all the aspects of the best 
practices for the development and validation of QSAR 
modeling.

The main framework was subdivided into four tasks: 
(i) dataset preparation and curation;18-20 (ii) chemical 
space analysis and structure-activity relationships (SAR) 
rules (see Supplementary Information section); (iii) ML 
modeling;2 and (iv) VS.31 Each subtask is performed within 
the workflows (see sections below) that are encapsulated 
inside metanodes for improving the organization and the 
layout of the routines, increasing their flexibility for future 
adaptations.

Dataset preparation and curation

Each task in the data preparation and curation workflow 
is critical to the development of predictive QSAR models.18-20 
Usually, data stored in public databases contains a fraction of 
erroneous records resulted from measurement variations and 
insufficient quality assessment. The first step is the curation 
of the chemical data, which allows for the identification 
and correction of errors in chemical structures.20 Mixtures 
of components, inorganic compounds and organometallic 
compounds are removed (if these are underrepresented in the 
dataset) and standardization of specific chemotypes such as 
aromatic rings, nitro groups, and tautomeric forms is required. 
Counterions are removed and any duplicate compounds 
identified should be analyzed and removed. Duplicate 
analysis, the next step of our workflow, is critical because 
it allows for the evaluation of the quality of experimental 
data and for the removal of (i) chemicals associated with 
duplicate records with contradictory experimental results and 
(ii) records repeating the same experimental outcome for the 
same compound. The presence of duplicates directly affects 
the quality of models, i.e., duplicates with identical activity 
present in both training and test sets lead to an overestimation 
of the quality of the models. Manual inspection is required 
at the end of the process to ensure that all structures are 
correct. Unreliable sources must be identified and removed. 
The amount of time and effort spent at this phase will depend 
on the dataset used.

Input data
The data were downloaded in comma-separated values 

(CSV) format (bioactivities) and standard structure-data 
file (SDF) format (chemical structures) from PubChem 
Bioassay32 or in CSV format (bioactivities + chemical 
structures) from the ChEMBL database.9,33 We used four 
reference datasets: Plasmodium falciparum 3D7 strain 
(Pf3D7),34 Schistosoma mansoni thioredoxin glutathione 
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reductase (SmTGR),35 human ether-a-go-go-related gene 
(hERG),36 and Ames mutagenicity,37 as case studies to 
develop an integrated pipeline for data preparation and 
curation for drug discovery and toxicity. An overview of 
the datasets is shown in Table 1.

Data files gathered from ChEMBL and PubChem 
databases have their particularities about column names and 

exported files’ extension when exported from the database. 
Therefore, considering these differences among the raw 
data that will serve as input for the user, two separate 
workflows were developed to treat bioassay data from 
PubChem bioassay (Figure 1a) and ChEMBL (Figure 1b). 
In the PubChem bioassay workflow, bioactivities (loaded 
in “CSV Reader” node) and chemical structures (loaded 

Table 1. Summary of the curated datasets

Dataset Source Activity type
Activity 
threshold

No. of entries 
before curation

No. of entries 
after curation

Concordance / %
Balanced 

dataset (1:1)

Pf3D7 CHEMBL236692234
categorical pEC50 6.0 1,855 1,337 86.2 1,134

continuous pEC50 − 1,855 1,173 18.3 −

SmTGR PubChem 48536435 categorical pIC50 5.0 359,841 316,663 99.2 5,024

Ames literature37 categorical phenotype − 7,546 6,931 94.2 6,114

hERG ChEMBL 24036 categorical pIC50 5.0 9,859 4,673 88.7 4,656

Pf3D7: Plasmodium falciparum 3D7 strain; pEC50: negative logarithm of the half maximal effective concentration; SmTGR: Schistosoma mansoni thioredoxin 
glutathione reductase; Ames: mutagenicity; hERG: human ether-a-go-go-related gene; pIC50: negative logarithm of the half maximal inhibitory concentration.

Figure 1. General overview of data preparation and curation workflow scheme developed for PubChem Bioassay (a) and ChEMBL (b) data. These two 
workflows were prepared to deal with the particularities of the gathered data from PubChem Bioassay and ChEMBL databases.
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in “SDF Reader” node) are merged using compound 
IDs. In the ChEMBL workflow, a CSV file containing 
the simplified molecular input line entry specification 
(SMILES) notations of molecules is read in using the “CSV 
Reader” node. The input parameters of each workflow are 
configured separately. The user must double-click on them 
to open the configuration window, load the curated dataset 
saved as SDF and CSV formats, then click the “OK” button.

Data preparation
Next, the input data is passed through the “Data 

preparation” metanode to normalize or transform different 
measures of binding affinity. For example, bioactivities (half 
maximal inhibitory concentration (IC50) or half maximal 
effective concentration (EC50)) on the mass scale (e.g., 
µg mL−1) were transformed to the molar scale (µM mL−1), 
then normalized to negative logarithm (−log) units (i.e., 
pEC50 and pIC50). Fundamentally, dose-dependent inhibition 
is a logarithmic phenomenon, so it makes sense to work in 
this manner. Subsequently, the “Bioactivity cutoff” metanode 
is used to set a threshold value that differentiates active/
toxic compounds from inactive/non-toxic compounds. The 
bioactivity cutoffs were selected according to hit and lead 
criteria in drug design.38 Details on the threshold values used 
in each dataset are shown in Table 1. The selected thresholds 
are based on data distribution and on literature for that 
particular endpoint. It is worth noting that this step is data-
dependent, and the user must perform all the transformations 
according to their own data.

Structure standardization
Very often, public datasets contains chemicals 

represented in different formats due to the experimental 
protocols they were evaluated or due to different protocols 
for drawing/storing chemicals. To solve these problems, 
the “Structure standardization” metanode is employed to 
standardize and clean all chemical structures according 
to protocols developed by Fourches et al.18-20 Explicit 
hydrogens are added, whereas polymers, salts, metals, 
organometallic compounds, and mixtures are removed to 
follow the best practices in data curation, since most of 
descriptor-generating program do not properly process 
these structures, generating errors in descriptors and 
fingerprints calculation. In addition, specific chemotypes 
such as aromatic rings and nitro groups are normalized, 
and valences are validated or corrected. This allows for the 
detection of the most common errors in chemical structures, 
such as abbreviations of functional groups (e.g., Phe as 
phenyl) and incorrectly assigned valences or aromaticity. 
Finally, International Chemical Identifier Keys (InChIKey) 
are generated for each entry in the dataset. InChIKey is an 

efficient method for detecting duplicates, once molecules 
have been adequately standardized.

Analysis of duplicates
Datasets ready for modeling must have unique compounds 

that are structurally different from all other compounds in 
the dataset. However, the same compound may be present 
many times in the same dataset. If modelers build models 
using datasets containing these structural duplicates in 
both modeling and external sets, the predictivity of these 
models will be overestimated.18-20 Therefore, duplicates 
must be identified and removed prior to any modeling 
study. Here, InChIKey notations are used to automatically 
identify duplicate entries in the “Analysis of duplicates” 
metanode. Once duplicates are identified, an analysis of 
their bioactivities is performed using the “Concordance” 
metanode. In this step, the intra- and inter-laboratory assay 
concordance between duplicate records is investigated 
to ensure consistency and quality of the datasets. Lastly, 
duplicates are removed as follows (Figure 2):

Binary models
(i) If duplicates have discordant outcomes, both entries 

are excluded; and (ii) if the reported outcomes of the 
duplicates were the same, one entry is retained in the dataset 
and the other excluded.18

Continuous models
(i) If duplicates presented difference > 0.2 logarithmic 

units (as proposed by Fourches et al.),18 both entries are 
excluded; and (ii) if the reported potencies are ≤ 0.2, an 
average of the values was calculated, and one entry is 
retained in the dataset.18 The number of duplicates identified 
in each dataset and overall concordance are shown in 
Table 1.

Dataset balancing
Data balancing will lead to loss of important data and 

might reduce chemical coverage. One should always try 
to develop models with balancing the data. However, this 
is not always possible. Usually, in HTS data, the number 
of active compounds is much smaller than the number 
of inactive compounds.39 In this case, binary ML models 
built from imbalanced datasets may be biased toward 
the prediction of the majority class and may be poorly 
predictive for the minority class.39 Other approaches for 
dealing with imbalanced datasets are discussed elsewhere.39 
Considering the unbiased characteristics of studied datasets 
(see details in Table 1), an under-sampling approach (i.e., 
reducing the size of the majority class) is applied through 
the “Dataset balancing” metanode.3 Datasets used in 
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continuous ML models must be saved without performing 
the balancing step.

The under-sampling strategy used here retains most 
of the representative structures of the majority class, thus 
ensuring a structural diversity that is most representative 
of the original chemical space.3 Initially, the Euclidean 
distances between each compound in the majority class 
and those present in the minority class are measured using 
k-nearest neighbor (k-NN) algorithm. Then, representative 
molecules with high, medium or low chemical similarity 
in the majority class were selected using k-distances and 
extracted to generate balanced datasets.40 The user must 
check out the number of compounds in minority class to 
see how many compounds will be necessary to linearly 
select from the majority class. This number must be inserted 
in the configuration of the node “Row sampling,” in the 
“Absolute” field. Finally, each balanced dataset may be 
saved by “SDF Writer” node in the user-defined directory. 
Details of the number of compounds in each balanced 
dataset are shown in Table 1.

Automated model building

The developed workflow (Figure 3) aims to simplify 

and automate the model-building protocol according to 
the best practices for building predictive models.2,21 The 
details of each step of modeling procedure are covered in 
the following sections.

Input data
To run the workflow, the “SDF Reader” node must 

be loaded with a curated dataset in SDF format. This 
node was configured to allow for a column containing 
chemical structures and associated biological data (binary 
or continuous). Datasets with binary data must have 
the experiment result column labeled as “outcome” and 
datasets with continuous data must have the pIC50 data 
labeled as “pIC50” (Figure 3).

Molecular fingerprints
Molecular descriptors are the result of mathematical 

procedures that transform chemical structure of a 
molecule into relevant numerical data. These descriptors 
can be used to establish relationships between the 
chemical structure and biological property of interest.41 
Fingerprints are a type of descriptors encoded as bit strings 
which encode the absence (0) or presence (1) of a fragment 
or atom in a chemical structure. The current workflow 

Figure 2. Criteria for duplicate data analysis in categorical (a) and continuous (b) bioassay data.
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automatically calculates different fingerprint types, 
including substructure-based fingerprints (Avalon),42 and 
circular fingerprints (Morgan43 and FeatMorgan).43 Within 
the “Fingerprints” metanode, the user must click on 
“RDKit fingerprints” node to select the desired fingerprint 
type. In addition, circular fingerprints may be adjusted 
according to bond radius and number of bits, whereas 
path-based fingerprints may be adjusted by number of 
bits and path length. In this work, all fingerprints were 
generated for the chosen datasets using radius 2 (for the 
circular fingerprints) and bit vector of 2,048 bits (for the 
circular and path-based fingerprints).

Highly correlated descriptors are linearly dependent 
and have similar effect on the dependent variable.2 Some 
algorithms are more prone to bias if correlated variables 
are used. Although ensemble trees are less prone to bias, 
removing correlated variables can make model building 
faster and facilitate interpretation. After calculating 
fingerprint descriptors, the workflow calculates the 
correlation between all descriptors and removes one of the 
highly correlated.

5-Fold external cross-validation (5FECV)
After the molecular fingerprint calculations, the 

dataset is split into five subsets of equal size using the 
“X-Partitioner” node. Four of these subsets form the 
training set (80% of the full set), while the remaining 
subset (20% of all compounds) serves as the test set. This 

procedure is repeated five times, allowing each of the five 
subsets to be used as a test set. Models are built using the 
training set while the compounds in the test set (fold) are 
employed to evaluate the predictive performance. At the 
end of each iteration, the “X-Aggregator” node collects 
the prediction results. All nodes in between these two 
nodes are executed as many times as repetitions should 
be performed.21

Applicability domain
One of the most important problems in any QSAR 

modeling is establishing the applicability domain (AD). 
The AD must be determined for the given chemical space 
of predictive models in order to localize “reliable” and 
“unreliable” regions for prediction.44 Users should be 
able to trust the model’s predictions if they have evidence 
that the chemical space used for training matches the 
chemical space of the compounds not previously seen by 
the model. We used the “Applicability Domain” metanode 
to estimate the AD of the developed models (Figure 3). 
Within this metanode, the “Domain-Similarity” node 
utilizes Euclidean distances to define chemical similarity 
among all training compounds and each compound in 
the test set. This prediction may be unreliable if the 
distance of a compound not present in the test set to 
its nearest neighbor in the training set is higher than an 
arbitrary parameter (Z = 0.5) that controls the significance  
level.45

Figure 3. General workflow for automated QSAR modeling of (a) categorical and (b) continuous data.
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Machine learning
To validate the workflow, we built categorical models 

using datasets previously studied by our group (i.e., 
SmTGR,3 Pf3D7,6 Ames mutagenicity and hERG),46 as 
well as continuous models using Pf3D7 dataset. For this 
purpose, KNIME contains nodes for most popular ML 
algorithms, such as RF13 and SVM14 and the user can decide 
which algorithm to use. As an example, we only used RF 
algorithm to build models for our case-studies. Categorical 
(Figure 3a) and continuous (Figure 3b) ML models can be 
generated with any of the mentioned algorithms using the 
“Weka” or “Analytics” nodes, respectively. Subsequently, 
optimization parameters of each algorithm may be adjusted 
by the user in their corresponding node. For example, in the 
“RandomForest (3.7)”, the number of trees and maximum 
depth parameters may be adjusted to increase model 
predictivity and to avoid overfitting. After completion of 
the model building step, the output of the developed model 
is saved in the user’s defined working directory using the 
“Weka Classifier Writer (3.7)” node (categorical models) 
or “Model Writer” node (continuous models).

Performance of ML models
The external predictivity resulting from a 5FECV 

procedure can be adequately assessed with the “Statistics” 

metanode. During this step, the categorical models are 
evaluated using correct classification rate (CCR), sensitivity 
(SE), specificity (SP), positive predictive value (PPV), and 
negative predictive value (NPV), whereas continuous models 
are evaluated using correlation coefficient (R2), root mean 
square error of cross validation (RMSECV), and predictive 
squared correlation coefficient for the test set (Q2

ext). After 
this step, users can easily access statistical results of built 
models by right-clicking on the metanode and selecting 
the option “Connected to: Filtered table”. The statistical 
characteristics of the models developed in this study are 
summarized in Table 2. As one can see, all the models 
were robust and predictive, with CCR for external sets in 
the range of 0.77-0.87. The binary SmTGR models showed 
predictive power similar to that obtained in our previous 
ML study.3 For the Ames mutagenicity data, all individual 
models presented a CCR  2% and SP 13%, higher than 
the consensus model developed by Alves et al.47 For the 
continuous Pf3D7 models, the combination of fingerprints 
with RF led to predictive models (Table 2) with Q2

ext values 
ranging between 0.72-0.73 and R2 of 0.73. The remaining 
models were not compared with public models since they 
were developed using unexplored or old datasets. Hence, the 
implemented protocol efficiently generates robust models 
with reliable predictive performance.

Table 2. Statistical characteristics of developed QSAR models using RF and assessed by 5-fold external cross validation

Categorical model

Endpoint Fingerprint CCR SE SP PPV NPV Coverage

Pf3D7

Avalon 0.85 0.82 0.88 0.87 0.83 0.59

Morgan 0.87 0.86 0.88 0.87 0.86 0.83

FeatMorgan 0.84 0.83 0.85 0.85 0.83 0.80

SmTGR

Avalon 0.84 0.82 0.87 0.87 0.83 0.72

Morgan 0.85 0.84 0.86 0.86 0.84 0.51

FeatMorgan 0.84 0.85 0.84 0.84 0.85 0.54

Ames

Avalon 0.80 0.81 0.79 0.79 0.80 0.95

Morgan 0.80 0.81 0.79 0.79 0.80 0.67

FeatMorgan 0.79 0.80 0.77 0.78 0.79 0.56

hERG

Avalon 0.77 0.79 0.75 0.76 0.78 0.74

Morgan 0.77 0.78 0.76 0.76 0.77 0.92

FeatMorgan 0.78 0.79 0.77 0.78 0.79 0.89

Continuous model

Endpoint Fingerprint R2  RMSECV k k’ Coverage

Pf3D7

Avalon 0.73 0.73 0.61 1.00 0.99 0.28

Morgan 0.73 0.72 0.62 1.00 0.99 0.83

FeatMorgan 0.73 0.72 0.62 1.00 0.99 0.78

CCR: correct classification rate; SE: sensitivity; SP: specificity; PPV: positive predictive value; NPV: negative predictive value; Coverage: percentage of 
test set compounds within the applicability domain; Pf3D7: Plasmodium falciparum 3D7 strain; SmTGR: Schistosoma mansoni thioredoxin glutathione 
reductase; Ames: mutagenicity; hERG: human ether-a-go-go-related gene; R2: correlation coefficient; : predictive squared correlation coefficient for 
the test set; RMSECV: root mean square error of cross validation; k and k’: slopes of regression lines through the origin.
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Virtual screening

The VS is a computational procedure to filter down 
large chemical libraries (i.e., 105 to 108 compounds) to 
prioritize a smaller number of compounds that will then 
be tested experimentally (i.e., 101 to 103 compounds).48 
Although VS was introduced 30 years ago, many molecular 
databases still contain errors and molecules with undesired 
physicochemical properties. In order to address this issue, 
we developed a comprehensive workflow (Figure 4) for 
the VS of potentially active and non-toxic compounds by 
a practical application on the ChemBridge EXPRESS-Pick 
Collection.49

Input data
To execute the workflow, the “SDF Reader” node 

must be loaded with the EXPRESS-Pick Collection 
(504,599 compounds) or any other library in SDF format.49 
This node was configured to provide a column containing 
chemical structures and associated physicochemical 
properties.

Data curation
The first step of the VS module contains a set of 

procedures to guarantee that structures are well represented 
and standardized using the same protocol for those 
employed in generating the models. In this step, structures 
are standardized, problematic molecules and duplicates 
are removed from the library. Subsequently, 2D chemical 
structures are stored within a KNIME table, and tagged with 
a ChemBridge identifier and experimental physicochemical 
properties. Several rules based on molecular property 
distribution were developed to characterize specific 
subsets of chemical libraries such as lead-like molecules 
(molecular weight ≤ 460, −4 ≤ logP (logarithm of octanol/
water partition coefficient) ≤ 4.5, logSw (logarithm of 
aqueous solubility) ≥ −5, ≤ 5 H-bond donors, ≤ 9 H-bond 
acceptors, ≤ 9 rotatable bonds, and ≤ 4 number of rings).50 
Finally, we adopted the “Aggregator advisor” metanode as 
a filter to identify molecules that are known to aggregate 
or may aggregate in prospective experimental assays. The 
criteria used to predict high probability for aggregation are 
logP > 3.0 and Tanimoto coefficient ≥ 85% to the closest 

Figure 4. General workflows for the VS of new SmTGR (a) and Pf3D7 (b) hits.
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known experimental aggregators.51 After these steps, 
244,194 compounds were excluded.

ML filtering
To perform ML predictions, the “Model Reader” nodes 

must be loaded with output files from the most predictive 
models, while the fingerprints must be defined in the 
“RDKit fingerprints” nodes using the same modeling 
parameters. In parallel, the “SDF Reader” nodes must 
be loaded with corresponding curated datasets in SDF 
format to estimate applicability domains. Finally, the 
most promising hit compounds appearing at the top of 
the VS list can be exported through the “SDF Writer” and 
“Excel Writer (XLS)” nodes. The user can set their own 
hit criteria configuring the meta-node “Selection” after the 
ML predictions.

After data curation, we performed two independent VS 
on the compounds from the ChemBridge EXPRESS-Pick 
Collection using developed models. The first one 
(Figure 4a) applied the categorical models constructed with 
Avalon fingerprint for SmTGR activity (probability to be 

active ≥ 0.7), Avalon fingerprint for Ames mutagenicity, 
and FeatMorgan fingerprint for hERG blocking. The 
second one (Figure 4b) applied the categorical model 
developed with Morgan fingerprint (probability to be 
active > 0.7) and the continuous model obtained from 
Morgan fingerprint (predicted pIC50 ≥ 6) for Pf3D7 activity 
and the same categorical models for Ames mutagenicity 
and hERG blocking for SmTGR endpoint. The Figure 5 
shows the number of compounds prioritized in each step 
of the VS campaigns. The top three virtual hits for each 
target and their respective predictions are found in Table 3. 
The complete list of SmTGR and Pf3D7 virtual hits and 
their respective predictions are listed in Supplementary 
Information, Files S2 and S3, respectively.

Conclusions

In this work, we developed an automated computational 
workflow for building robust and predictive QSAR models 
employing ML algorithms following the best practices 
for model development and validation. The worfklow 

Figure 5. General scheme of case study VS filters and results of each step.
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has four modules, containing data curation, modeling, 
chemical space analysis (Supplementary Information), 
and VS. Moreover, we employed these workflows to 
curate, analyze, and model four datasets previously 
used by our group, as a benchmark. This workflow 
provides scientists a simple and guided open-source 
cheminformatics platform for development of QSAR 
models. This framework could be used as a validated 
starting point for beginner cheminformatics scientists to 
implement modeling in their laboratory routines following 
the best practices for building predictive models approved 
by the community. The workflows are freely available for 
download at GitHub52 and in Supplementary Information 
(File S1).

Methodology

Architecture

The automated framework described herein was 
developed within KNIME 3.6.022,23 containing the RDKit,53 
Weka,54 Enalos,55 Chemistry Development Kit (CDK),56 and 
the Indigo57 nodes distributed as part of the ‘community 
contributions’.58

General protocol

Initially, compounds with bioactivity data are 
retrieved from ChEMBL9 and PubChem10 database and 

Table 3. Case study: top three virtual hits for each biological property and their predictions by ML model

Target Compound Predicted pIC50 Confidence
Applicability 

domain
Ames 

mutagenicity
hERG 

inhibition

Pf3D7

 

7.13
high probability 

(96%)
reliable

nonmutagenic 
(−)

noncardiotoxic 
(−)

 

6.66
good probability 

(88%)
reliable

nonmutagenic 
(−)

noncardiotoxic 
(−)

 

7.99
good probability 

(88%)
reliable

nonmutagenic 
(−)

noncardiotoxic 
(−)

SmTGR

 

−
high probability 

(99%)
reliable

nonmutagenic 
(−)

noncardiotoxic 
(−)

 

−
high probability 

(99%)
reliable

nonmutagenic 
(−)

noncardiotoxic 
(−)

 

−
high probability 

(99%)
reliable

nonmutagenic 
(−)

noncardiotoxic 
(−)

pIC50: negative logarithm of the half maximal inhibitory concentration; Ames: mutagenicity; hERG: human ether-a-go-go-related gene; Pf3D7: Plasmodium 
falciparum 3D7 strain; SmTGR: Schistosoma mansoni thioredoxin glutathione reductase.



Automated Framework for Developing Predictive Machine Learning Models for Data-Driven Drug Discovery J. Braz. Chem. Soc.120

imported separately into KNIME 3.6.0.22,23 Subsequently, 
the potency values are converted to −log units, and an 
activity threshold is defined for discrimination between 
active and inactive compounds. All chemical structures 
and correspondent biological properties are carefully 
standardized and curated using Indigo nodes57 and 
according to the protocols proposed by Fourches et al.18-20 
Then, curated datasets were balanced using a linear under-
sampling approach3 implemented in Enalos nodes.55 At 
the end of dataset balancing, molecular fingerprints may 
be calculated for all chemical structures using RDKit 
nodes.53 The binary and continuous ML models are 
developed using RF algorithm13 implemented in Weka 
nodes.54 Models will be validated using 5FECV procedure 
using “X-Partitioner” nodes. The AD was calculated using 
“Domain-Similarity” node implemented by Enalos.55 ML 
models are fully compliant to best practices for predictive 
modeling,16,20 and Organization for Economic Co-operation 
and Development (OECD) recommendations,59 such as 
(i) a defined end point, (ii) an unambiguous algorithm, 
(iii) a defined domain of applicability, (iv) appropriate 
measures of goodness-of-fit, robustness, and predictivity, 
and (v) mechanistic interpretation, if possible. Finally, ML 
models were saved using “Weka Classifier Writer (3.7)” 
node or “Model Writer” node and implemented as filters 
in VS workflow to prioritize new compounds for further 
testing in experimental assay platforms. A previous version 
of this article has been published as preprint.60

Supplementary Information

Supplementary information (detailed description of 
structure-activity relationship workflow) is available free 
of charge at http://jbcs.sbq.org.br as PDF file. Source 
code of KNIME workflows (File S1) at .knar format, and 
complete list of SmTGR and Pf3D7 virtual hits (Files 
S2 and S3, respectively) in PDF file are also available at  
http://jbcs.sbq.org.br.
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