Supplementary Information

New Magnetic Fe Oxide-Carbon Based Acid Catalyst Prepared from Bio-Oil for Esterification Reactions

Fabiane C. Ballotin,² Vitor F. Almeida,² José D. Ardisson,² Márcio J. da Silva,³ Ricardo R. Soares,ᵉ,d
Ana Paula C. Teixeira *,⁵,a and Rochel M. Lagoa

¹Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte-MG, Brazil

²Centro de Desenvolvimento da Tecnologia Nuclear, 31270-901 Belo Horizonte-MG, Brazil

³Departamento de Química, Universidade Federal de Viçosa, 36570-900 Viçosa-MG, Brazil

⁴Faculdade de Engenharia Química, Universidade Federal de Uberlândia, 38408-100 Uberlândia-MG, Brazil

Figure S1. X-ray diffractograms of materials (B8Fe)₄₅₀, (B16Fe)₄₅₀ and (B24Fe)₄₅₀.

*e-mail: anapct@ufmg.br
Figure S2. X-ray diffractograms of samples (B8Fe)$_{400}$, (B8Fe)$_{450}$, (B8Fe)$_{500}$ and (B8Fe)$_{600}$.

Figure S3. Mössbauer spectra, at 30 K, of samples (B8Fe)$_{450}$, (B8Fe)$_{500}$ and (B8Fe)$_{600}$.

Amorphous carbon
\(\gamma\text{-Fe}_2\text{O}_3/\text{Fe}_3\text{O}_4\)

Intensity / a.u.

20 / degree

30K

Relative transmission

Velocity (mm/s)
Table S1. Hyperfine parameters at 30 K of samples (B8Fe)$_{450}$, (B8Fe)$_{500}$, (B8Fe)$_{600}$, (B8Fe)$_{450}$S, (B8Fe)$_{500}$S and (B8Fe)$_{600}$S

<table>
<thead>
<tr>
<th>Sample</th>
<th>Oxidation state</th>
<th>$\delta \pm 0.05$ / (mm s$^{-1}$)</th>
<th>Deq/Δ ± 0.05 / (mm s$^{-1}$)</th>
<th>H$_{HF}$ ± 0.5 / Tesla</th>
<th>Area ± 1 / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B8Fe)$_{450}$</td>
<td>Fe$^{3+}$</td>
<td>0.45</td>
<td>0.0</td>
<td>48.0</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.40</td>
<td>0.0</td>
<td>39.0</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.45</td>
<td>1.03</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>(B8Fe)$_{450}$S</td>
<td>Fe$^{3+}$</td>
<td>0.43</td>
<td>0.0</td>
<td>47.7</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.39</td>
<td>0.0</td>
<td>41.8</td>
<td>28</td>
</tr>
<tr>
<td>(B8Fe)$_{500}$</td>
<td>Fe$^{3+}$</td>
<td>0.44</td>
<td>0.0</td>
<td>50.4</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.45</td>
<td>0.0</td>
<td>45.5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.44</td>
<td>0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B8Fe)$_{500}$S</td>
<td>Fe$^{3+}$</td>
<td>0.43</td>
<td>0.0</td>
<td>50.1</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.44</td>
<td>0.0</td>
<td>45.1</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.44</td>
<td>0.80</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>(B8Fe)$_{600}$</td>
<td>Fe$^{3+}$</td>
<td>0.46</td>
<td>0.0</td>
<td>49.7</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.47</td>
<td>0.0</td>
<td>44.0</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.44</td>
<td>1.00</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>(B8Fe)$_{600}$S</td>
<td>Fe$^{3+}$</td>
<td>0.45</td>
<td>0.0</td>
<td>48.9</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.45</td>
<td>0.0</td>
<td>42.4</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.46</td>
<td>0.98</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

δ: isomer shift; Deq/Δ: quadrupole splitting; H$_{HF}$: hyperfine field; (B8Fe)$_{450}$, (B8Fe)$_{500}$, (B8Fe)$_{600}$: bio-oil impregnated with 8 wt.% of iron, thermally treated at 400, 450, 500 or 600 °C, respectively; (B8Fe)$_{450}$S, (B8Fe)$_{500}$S, (B8Fe)$_{600}$S: sulfonated (B8Fe)$_{450}$, (B8Fe)$_{500}$, (B8Fe)$_{600}$, respectively.
Figure S4. EDS analysis of iron materials before ((B8Fe)$_{400}$) and after sulfonation ((B8Fe)$_{400}$S).

Figure S5. TEM images of material (B8Fe)$_{400}$S.
Figure S6. FTIR-ATR spectra of sulfonated materials: (B8Fe)400S, (B8Fe)450S, (B8Fe)500S and (B8Fe)600S.

Figure S7. TG curves in air atmosphere of materials (B8Fe)400 and (B8Fe)400S.
Figure S8. TG curves in air atmosphere of materials (B8Fe)$_{450}$, (B8Fe)$_{450}$S, (B8Fe)$_{500}$, (B8Fe)$_{500}$S, (B8Fe)$_{600}$ and (B8Fe)$_{600}$S.

Figure S9. Potentiometric titration curves with n-butylamine of materials (B8Fe)$_{400}$S, (B8Fe)$_{450}$S, (B8Fe)$_{500}$S and B8Fe$_{500}$S.