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A general kinetic equation to simulate differential scanning calorimetry (DSC) data was 
employed along this work. Random noises are used to generate a thousand data, which are 
considered to evaluate the performance of Levenberg-Marquardt (LM) and a Hopfield neural 
network (HNN) based algorithm in the fitting process. The HNN-based algorithm showed better 
results for two different initial conditions: exact and approximated values. After this statistical 
analysis, DSC experimental data at three heating rates for losartan potassium, an antihypertensive 
drug, was adjusted by the HNN method using different initial conditions to obtain the activation 
energy and frequency factor. Additionally, it was possible to recover the parameters for the kinetic 
model with accuracy, showing that the conversion is described by a complex process, once these 
values do not correspond to any ideal models described in the literature.
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Introduction

Differential scanning calorimetry (DSC) is an 
accurate technique widely used to investigate the 
material thermal behavior and can be applied in kinetic 
studies on polymorphic conversion.1 In this experiment, 
the temperature is linearly increased and quantitative 
calorimetric information is obtained.2 The main physical-
chemical properties investigated by this technique are the 
glass transition,3,4 heat capacity discontinuity in the glass 
transition,5 purity,6 heat of fusion and heat of reactions. 
Solid materials as polymers and drugs have their properties 
and/or kinetic of polymorphic conversion extensively 
explored by this technique.7-9

Kinetic study from DSC experimental data assumes the 
process obeys Arrhenius law. The kinetic triplet (activation 
energy, pre-exponential factor and kinetic model) can be 
determined from the general equation:

	 (1)

with α as the conversion degree, β the heating rate, A the 
frequency factor, Ea the activation energy, R the gas constant 
and T the temperature. A general kinetic model can be 

considered, f(α) = αm(1 – qα)n, in which the mechanism, 
depending on the m, n and q parameters, describes the 
physics and chemistry of the process.10-12 Traditionally, 
equation 1 is used together with DSC data and fitted 
by Levenberg-Marquardt (LM) algorithm to determine 
the kinetic triplet. Neural network can also be used to 
successfully fit experimental data with high accuracy and 
reduced computational effort.13-16

The artificial neural network application to filter and 
deconvolute calorimetric signals was initially proposed 
by Sbirrazzuoli and Brunel.13 In their study, synthetic DSC 
curves were adjusted and the error analysis established by 
an objective function defined as the difference between 
synthetic and determined data. 

In this work, the Hopfield neural network (HNN)-based 
algorithm is proposed to fit synthetic DSC curves and to 
retrieve the kinetic parameters (lnA, Ea, m, n, q). This 
procedure has already been explored by the present research 
group in other works.15-20 The performance of the network 
is investigated using a thousand curves with added random 
noise of 2.5% at point-by-point. Also, the proposed method 
is tested against LM algorithm with respect to accuracy and 
computational time to determine the parameters. 

After this theoretical analysis, experimental data of 
losartan potassium (LOK), an antihypertensive drug, during 
its polymorphic conversion is investigated. To generalize 
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the process as a complex kinetic, i.e., consider the 
occurrence of several mechanisms at same time, a general 
equation is used in the fit procedure. This assumption is 
validated since the retrieved parameters do not correspond 
to any ideal model. 

Methodology

Synthetic data
 

DSC curves of heat flow, , in a temperature 

interval can be simulated assuming a known transformation. 
For this, the activation energy, Ea, pre-exponential factor, 
k0, enthalpy (ΔH) and a mechanism, f(α), are chosen and 
used in the kinetic equation:

	 (2)

in which αi = Hi/∆H and Hi is the partial area calculated 
at time i. The rate constant is determined from Arrhenius 

law , with R the gas constant (8.314 J K-1 mol-l). 

Making the appropriate substitutions, 

	 (3)

Sbirrazzuoli14,21 demonstrated that a mechanism for 
homogeneous kinetic processes as f(αi)  =  (1 – αi)n is 
appropriate to describe a large amount of DSC curves. 
Thus, to determine DSC synthetic data it is necessary first 
to compute αi as,

	 (4)

Defining 

	 (5)

one obtains

	 (6)

The simulated DSC data is obtained from this result 
by means of equation 3 calculating αi and its derivative 
in time. Taking the logarithm in equation 3 the general 
equation is established, 

	 (7)

This equation is treated in the present work by LM and 
HNN-based algorithm to determine n as the reaction order, 
the activation energy, and the pre-exponential factor.

Nonlinear least-squares optimization and statistical 
analyses

To evaluate the performance of the LM and HNN-based 
algorithm it is necessary to establish a multi objective error 
function to the problem, given by

	 (8)

in which N and M are the number of points and heating 
rates, respectively. Yr,i,exp represents the synthetic heat flow 
by equation 3 and Yr,i,cal is the recovered heat flow, both 
for the r-th heating rate at time i. The kinetic parameters 
are determined by fitting DSC data and is investigated 
considering 1000 synthetic dH/dt(T) data for each 
heating rate with random errors of 2.5% point-by-point 
incorporated. This value of 2.5% in random noises was 
chosen since it is a common error in DSC experimental 
curves. 

Levenberg-Marquardt (LM) fitting

The LM algorithm consists in using the first order 
regularization to solve a nonlinear problem. Applying the 
Newton’s method in the error function,

	 (9)

with w as the vector of parameters, (Ea, ko and n). At 
minimum, E(w + δw) – E(w) = 0 and therefore

	 (10)

Considering the error function given by equation 8, 

	  (11)

with e(w) = (Yr,i,exp – Yr,i,cal(w)) and J the Jacobian matrix,

	 (12)
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To determine the term   in equation 10 it may 
be explicit as

	(13)

Considering that S(w) contribution is not relevant, 

. Using this result along equations 10  

and 11, the parameters can be obtained by solving 

	 (14)

However, in this work, it is assumed the first-order 
regularization in equation 13,

	 (15)

with I being the identity matrix and µ as the regularization 
parameter. 

Hopfield neural network (HNN) fitting

HNN is a recurrent single-layer network with all logic 
units connected. The neurons are connected by a weight 
factor, Tij, between the neurons i and j. The state of a 
neuron, ui, is determined by a weighted sum of all neurons 
connected to it and by external impulses, Ii as

	 (16)

This equation represents the HNN with the corresponding 
learning rate, µi, usually equals to one. In equation 16, ui(t) 
is the neuron state i at time (t) and f(uj(t)) is the activated 
state of all neurons connected to neuron i. The neuron state 
must be activated by a function, f, defined as activation 
function, which is monotonically crescent, continuous and 
well-behaved.

Representing the individual error in equation 8:

	 (17)

At minimum the problem to be solved by the HNN is 
represented as,

	 (18)

with J(w) the Jacobian matrix. Considering δwi = fi = f(ui(t)) 

the temporal derivative of error function, equation 8, is 
calculated as

	 (19)

If the condition  is imposed, i.e., a decreasing 

error over time, and since , one is left with

	 (20)

Assuming the error function of equation 8, this equation 
can be represented as

 	 (21)

Therefore, the neurons temporal evolution in the 
network is given by

	 (22)

with

	 (23)

To solve equation 22 it is used a fourth order Runge-
Kutta method. The feature of multiple solutions is observed 
during this integration process. The learning process 
consists of the actualization of parameters considered in 
the error function and it is stopped when the neural network 

learned about the process, i.e., .

Experimental data

The thermal behavior of LOK was determined using 
DSC60 Shimadzu cell (Tokyo, Japan), calibrated with 
indium (melting point: Tonset = 156.63 °C, ∆Hfus = 28.45 J g–1) 
under dynamic nitrogen atmosphere at 50 mL min-1, under 
heating rate of 8, 10 and 12 °C min-1, from 30 to 400 °C, 
in closed aluminum crucible and sample mass, accurately 
about 1.5  mg. The thermogravimetric (TG) curve was 
obtained in a Shimadzu DTG60 thermobalance (Tokyo, 
Japan) with heating rate of 10 °C min-1, from 30 to 600 °C, 
dynamic nitrogen atmosphere at 50 mL min-1, in alumina 
crucible and mass of sample accurately weighted about 
2.5 mg.
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Results and Discussion

Computation of DSC curves incremented with experimental-
like statistical noisy

The kinetic parameters of activation energy 
Ea = 74 kJ mol–1 and pre-exponential factor ln(k0) = 18 
together with the mechanism order n = 2 in equation 7, 
were considered to produce the synthetic data in the 
temperature interval from 353 to 453 K (this temperature 
interval is due to the kinetic parameters chosen to produce 
the synthetic data). Following equation 6, one computed 
the αi data and its derivative curve to determine dHi/dt  
as in equation 3, with ΔH = 77 kJ. Considering 
experimental data, the result for αi should be computed 
using αi = Hi/∆H, with Hi as the partial area calculated at 
time i. To test numerically the synthetic data, the αi values 
were calculated from both equations and are represented in 
Figure 1 for three different heating rates. It is observed that 
both methods provide results in fair agreement. Figure 2 
presents the synthetic data for dHi/dt determined from 
the αi curves and another 1000 curves with 2.5% random 
noises added point‑by‑point.

Comparative results of LM and HNN-based algorithm

Case 1: The process is known and the kinetic parameters 
is provided to confirm the kinetics

In this case the process is known and the correct 
parameters are provided to the algorithms. One hundred 
simulated points equally spaced in the temperature domain 
were used in each curve. Figure 3 presents the histogram of 
parameters determined by fitting the 1000 curves of dHi/dt 
with noise. The retrieved parameters and standard deviations 
computed by the LM and HNN-based methods are shown 
in Table 1. Fitting procedure with both algorithms presented 
results very close to the exact value used to simulate the 
data, Ea = 74 kJ mol–1, ln(k0) = 18 and n = 2. The calculated 
parameters also showed smaller standard deviations in both 
cases. This small dispersion around the exact value indicates 
a good accuracy of the methods.

An important aspect to be highlighted is the 
computational time in both algorithms. These results are 
presented in Table 2. Although the LM method accuracy, 
the HNN fitting algorithm is 535 times faster.

The adjustment by HNN and LM are presented in 
Figure 2 for three heating rates and simulated data without 

Figure 1. The αi curves computed as equation 5 (solid line) and as 
αi = Hi/∆H (squares). The curves are superimposed in this scale. 

Figure 2. Simulated DSC data. Original curve obtained from αi curve (*) 
and one thousand added noise curves (colored shadow).

Table 1. Results and standard deviations of Ea, ln(k0) and n by LM and HNN 

Study of case Parameter Theoretical value
LM HNN

Result Standard deviation Result Standard deviation

Case 1

Ea / (kJ mol–1) 74 74.1 0.5 74.0 2.0 × 10–8

ln(k0) 18 18.0 0.2 18.0 2.0 × 10–5

n 2 2.0 2.0 × 10–4 2.0 2.0 × 10–6

Case 2

Ea / (kJ mol–1) 74 74.0 2 74.0 2.0 × 10–6

ln(k0) 18 18.0 1 18.0 2.0 × 10–3

n 2 2.0 0.3 2.0 2.0 × 10–2

LM: Levenberg-Marquardt; HNN: Hopfield neural network; Ea: activation energy; ln(k0): logarithm of pre-exponential factor; n: reaction order.
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error for the case 1 analysis. The fair agreement among the 
retrieved curves and the simulated data corroborates the 
potentiality of both methods.

Figure 4 shows the computed histograms of the 
parameters retrieved by LM and HNN-based algorithm 
for the 1000 DSC synthetic curves with random noise. The 
thinner histogram for HNN-based algorithm demonstrate 
the accuracy of this method if compared with LM.

Case 2: The process is unknown but an estimative is 
provided to test the algorithms 

In this case no information is known about the process, 
but an estimative for the parameters are provided as initial 
guess to the algorithms. One defined as a first estimative 

Ea = 100 kJ mol–1, ln(k0) = 10 and n = 0 and used the 
same 1000  DSC curves incremented with 2.5% noise. 
Figure  5 presents the histograms obtained by LM and 
HNN‑based algorithms. The results for each parameter 
and the corresponding standard deviation are shown in 
Table 1. The HNN-based algorithm showed, also in this 
case, thinner histograms for all parameters, proving to 
be more precise. 

For adequate drug products manufacturing by 
pharmaceutical industry, a detailed description of material 
composition and process instructions are required. For 
example, it is very important to know about any physical 
or chemical transformation in the substances, as the 
polymorphic conversion in losartan potassium. This 
knowledge guarantees public health and it is predicted 

Table 2. Elapsed time for fitting procedure spent by LM and HNN

Study of case Optimization method Elapsed time / h

Case 1
HNN 0.013

LM 6.958

Case 2
HNN 0.011

LM 1.360

HNN: Hopfield neural network; LM: Levenberg-Marquardt.

Figure 3. Simulated data adjustment by Levenberg-Marquardt (LM) and 
neural network (HNN)-based methods.

Figure 4. Histograms of Ea, ln(k0), and n retrieved by Levenberg-Marquardt 
(LM) and neural network (HNN)-based method for the case 1 analysis.
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by Good Manufacturing Practices (GMP) as required by 
regulatory agencies.22,23 Therefore the use of analytical 
techniques, such as DSC curves, together with accurate 
and robust methodology, as HNN, that presents runtime 
compatible with the market dynamics and meet the 
Pharmaceutical Quality System, are fundamental for drug 
production and obeys the quality standards, required by 
regulatory agencies and the market.20,24

HNN can be a robust tool applied to Process Analytical 
Technology (PAT) described within Quality by Design 
(QbD) as emerging systems for quality assurance in 
pharmaceutical processes.25-27 Therefore it is a promising 
routine methodology for the treatment of DSC data applied 

in polymorphic conversion kinetic studies, as shown for 
potassium losartan in the next section.

Experimental results: losartan potassium

LOK is an orally active antihypertensive agent, 
nonpeptide-angiotensin II receptor antagonist with no side 
effects, which proves its efficacy, safety and therefore its 
clinical relevance.28 The occurrence of polymorphism in 
LOK was previously described29 and the conversion of 
LOK form I to LOK form II can be induced by heat.30 
In this work one proposed to study the kinetic of this 
polymorphic conversion using DSC data applying the 
HNN-based algorithm.

DSC curve of LOK (Figure 6, solid line) shows a 
small endothermic event between 228-245 °C (in a circle), 
without mass loss as shows TG curve (Figure 6, short dot 
line), which corresponds to an enantiotropic conversion 
of form I to form II (Tonset = 231.3 °C, ∆H = 13.16 J g–1). 
These two polymorphic forms were confirmed by X-ray 
powder diffraction as previously described.29 A remarkable 
endothermic peak at 271.5 ºC (Tonset) with enthalpy of 
95.1  J  g-1 (without mass loss, as shows in TG curve) 
represents the form II melting. Then, decomposition 
process starts at 278 ºC with mass loss of 55% in three 
steps, as can be observed in the TG curve. These results 
refer to the heating rate at 10 ºC min-1.

Experimental data acquired at three heating rates (8, 
10 and 12 ºC min-1) were considered and HNN and LM 
methods used to fit equation 7 in a multi objective function, 
as equation 8. Three different heating rates were used to 
attend International Confederation for Thermal Analysis 
and Calorimetry (ICTAC) recommendations for an accurate 

Figure 5. Histograms of kinetic parameters computed by LM and HNN-
based methods using an estimative for the initial guess.

Figure 6. DSC (solid line) and TG (dotted line) curves of losartan 
potassium. Form I convert to form II at 231.3 ºC (Tonset). The form II melting 
at 271.5 ºC (Tonset). The graphic representation of losartan potassium 
molecule is on detail. 
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determination of kinetic parameters.31 Nevertheless, neither 
HNN nor LM algorithms presented reasonable adjustments. 
This result suggests the proposed model in equation 7 is not 
adequate to describe the LOK conversion process. Thus, a 
general kinetic model11,12 was used to effectively describe 
the experimental data as,

 	 (24)

HNN algorithm determined lnA, Ea, m, n, q, by 
adjusting experimental data with three heating rates. Table 3 
presents the results together with the residual errors. Since 

the term  in equations 2 and 3 accept several 

combinations of k0 and Ea which guarantee the correct 

amplitude for  and , it is necessary to analyze 

the initial conditions given to start the minimization 
process. Results of k0 and Ea for different initial conditions 
(keeping the initial conditions for m = 1.0, q = 1.0 and 
n = 1.0) are presented in Table 3. To analyze the sensitivity 
of the method, we used slightly different values for k0 and 
Ea as initial conditions. A difference smaller than 10 s-1 for 
the frequency factor and 10 kJ mol-1 in the activation energy 
is enough to provide different values for these retrieved 
parameters. Although, the model remains unchanged for 
several tested initial conditions. In this calculation, the 
tolerance in sum squared error was set to be of 10-6. The 
root mean squared deviation, rmsd, is calculated as follows:

	 (25)

in which the term  is the experimental and 

 is the calculated data for N data points, both at 

each heating rate r.
From Table 3, we can observe that all results are 

chemically acceptable. As all these solutions are physically 
coherent, it is possible to choose the solution with the 
smaller rmsd, although this parameter varies only in 
the 3rd decimal place. Therefore, one can infer that 
LOK conversion is described assuming the parameters 
k0 = 6.376 × 1012 s–1, Ea = 136.5 kJ mol–1, m = 0.6, n = 0.85 
and q = 1.0. It infers that the process occurs as a complex 
event, once these values do not correspond to any ideal 
kinetic model. The smaller rmsd solution and the LOK 
experimental data are shown in Figure 7. 

Figure 8 presents the residual error evolution over 
time for HNN method. It can be seen the convergence of 
the neural network about the eightieth iteration. Together 
with this analysis, the Figure 9 also demonstrates the 
convergence of the HNN method representing the evolution 
of the artificial neurons over time. From this figure, one 
can observe the states of artificial neurons converging for 

Table 3. Retrieved kinetic parameters k0, Ea, m, n, q and residual errors to fit the LOK experimental data with different initial conditions

Initial condition Retrieved kinetic parameters
rmsd

k0 / s-1 Ea / (kJ mol-1) k0 / s-1 Ea / (kJ mol-1) m n q

1.0 × 1012 130.00 1.860 × 1013 141.47 0.59 0.81 1.00 0.110

2.0 × 1012 140.00 3.484 × 1013 144.11 0.59 0.81 1.00 0. 110

5.0 × 1011 130.00 7.070 × 1012 137.37 0.59 0.81 0.998 0.115

6.0 × 1011 130.00 1.804 × 1013 141.35 0.59 0.81 1.00 0.110

2.0 × 1012 140.00 6.376 × 1012 136.89 0.59 0.81 0.998 0.0098

2.0 × 1012 130.00 6.376 × 1012 136.52 0.60 0.85 1.00 0.0052

k0: pre-exponential factor; Ea: activation energy; m, n, q: parameters of the general kinetic model; rmsd: root mean squared deviation.

Figure 7. Experimental data (*) and HNN adjustment (solid line).
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q = 1, n as an average value between 0.75 and 0.9 and the m 
parameter as an average value between 0.55 and 0.65. The 
activation energy is about 135 kJ mol–1 and the k0 parameter 
as an average value between 2.0 × 1013 and 6.0 × 1012 s–1. 
The k0 is not in this figure because of the scale.

Conclusions

The HNN methodology has some advantages over 
conventional optimization algorithms-in this case LM-in 
terms of adaptability and robustness to treat experimental 
error and unknown initial guess in the kinetic studies using 
DSC experimental data. Even if an unknown value is 
provided as initial guess, the HNN algorithm converges for 
the correct answer presenting a narrow normal distribution 
about the correct values, as seen from simulated data. 
The kinetics of polymorphic conversion event in losartan 
potassium employing this method was performed and the 
results imply a process that occurs as a complex event, 

Figure 8. Residual error evolution during the HNN learning time.

Figure 9. Evolution of artificial neurons during the HNN learning time.

involving the contribution of various kinetic models, once 
the m, n and q parameters do not correspond to any ideal 
model. Also, it was observed a small residual error to fit the 
experimental data, for the activation energy of 135 kJ mol–1 
and frequency factor of 6.376 × 1012 s–1.

Since the model parameters have non-sensitivity to 
initial conditions it is possible to obtain m, n and q with 
great precision and hence confirm that the polymorphic 
conversion occurs as a complex process. Nevertheless, to 
accurately determine the activation energy and frequency 
factor parameters it is necessary data for several heating 
rates, as presented by Ozawa.32 
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