Supplementary Information

New Allyldithiocarbimates: Synthesis, Structure and Antifungal Activity against *Phakopsora pachyrhizi* and *Hemileia vastatrix*

Antonio E. C. Vidigal,^a Mayura M. M. Rubinger, ^b *^a Lucas F. da Silva,^b Laércio Zambolim,^b Arthur B. D. Pereira,^a Silvana Guilardi,^c Rafael A. C. Souza^c and Javier Ellena^d

^aDepartamento de Química, Universidade Federal de Viçosa, 36570-977 Viçosa-MG, Brazil

^bDepartamento de Fitopatologia, Universidade Federal de Viçosa, 36570-977 Viçosa-MG, Brazil

^cInstituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia-MG, Brazil

^dInstituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos-SP, Brazil

We include here (Figures S1-S36) the infrared and NMR spectra for the allyldithiocarbimate salts **1a-d**, **2a-d** and **3a-d**.

Figure S1. FTIR-ATR spectrum of compound 1a.

*e-mail: mayura@ufv.br

Figure S2. FTIR-ATR spectrum of compound 1b.

Figure S3. FTIR-ATR spectrum of compound 1c.

Figure S4. FTIR-ATR spectrum of compound 1d.

Figure S5. FTIR-ATR spectrum of compound 2a.

Figure S6. FTIR-ATR spectrum of compound 2b.

Figure S7. FTIR-ATR spectrum of compound 2c.

Figure S8. FTIR-ATR spectrum of compound 2d.

Figure S9. FTIR-ATR spectrum of compound 3a.

Figure S10. FTIR-ATR spectrum of compound 3b.

Figure S11. FTIR-ATR spectrum of compound 3c.

Figure S12. FTIR-ATR spectrum of compound 3d.

Figure S13. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 1a.

Figure S14. ^{13}C { $^{1}H\}$ NMR spectrum (75 MHz, CDCl₃) of compound 1a.

Figure S15. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 1b.

Figure S17. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 1c.

Figure S18. ^{13}C { $^{1}H\}$ NMR spectrum (75 MHz, CDCl₃) of compound 1c.

Figure S19. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 1d.

Figure S20. ^{13}C { $^{1}H\}$ NMR spectrum (75 MHz, CDCl₃) of compound 1d.

Figure S21. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 2a.

Figure S22. ^{13}C { $^{1}H\}$ NMR spectrum (75 MHz, CDCl₃) of compound 2a.

Figure S23. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 2b.

Figure S24. ^{13}C { $^{1}H\}$ NMR spectrum (75 MHz, CDCl₃) of compound 2b.

Figure S25. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 2c.

Figure S26. ^{13}C { ^{1}H } NMR spectrum (75 MHz, CDCl₃) of compound 2c.

Figure S27. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 2d.

Figure S28. ^{13}C { $^{1}H} NMR spectrum (75 MHz, CDCl_3) of compound 2d.$

Figure S29. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 3a.

Figure S30. ^{13}C { ^{1}H } NMR spectrum (75 MHz, CDCl₃) of compound 3a.

Figure S31. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 3b.

Figure S32. ¹³C {¹H} NMR spectrum (75 MHz, CDCl₃) of compound 3b.

Figure S33. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 3c.

Figure S34. ^{13}C { ^{1}H } NMR spectrum (75 MHz, CDCl₃) of compound 3c.

Figure S35. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 3d.

Figure S36. ¹³C {¹H} NMR spectrum (75 MHz, CDCl₃) of compound 3d.

We include here (**Tables S1**, **S2** and **S3**) the data obtained from the second experiment for the confirmation of the antifungal activity results.

Table S1. Regression equations for the inhibition of *P. pachyrhizi* spore germination *versus* the log of the allyldithiocarbimate salts concentrations, equation parameters and statistical data (second experiment with three replicates *per* treatment)

Compound	Ec	Equation: $y = A1 + \frac{(A2 - A1)}{(1 + 10^{((LOG_x 0 - x)p)})}$			Statistical data			
	A1	A2	LOGx0	р	r^2	F	$\operatorname{Prob} > F$	
1a	14.23	100.63	-0.99	2.36	0.9906	836.88	< 0.0001	
1b	9.37	99.49	-1.14	2.35	0.9963	2275.81	< 0.0001	
1c	7.85	105.54	-1.40	0.99	0.9819	1181.61	< 0.0001	
1d	1.69	103.96	-1.48	1.03	0.9775	930.19	< 0.0001	
2a	19.1	101.69	-1.04	2.08	0.9921	1286.99	< 0.0001	
2b	7.88	109.62	-1.16	0.97	0.9724	517.34	< 0.0001	
2c	8.27	100.24	-1.30	1.87	0.9916	1431.39	< 0.0001	
2d	-8.73	83.65	-1.29	1.52	0.9915	1007.81	< 0.0001	
3a	20.35	103.88	-1.03	1.47	0.9886	1093.87	< 0.0001	
3b	18.58	106.13	-1.00	1.31	0.9880	1041.49	< 0.0001	
3c	27.79	103.13	-1.05	1.59	0.9952	3197.32	< 0.0001	
3d	3.00	107.02	-1.23	1.04	0.9841	857.97	< 0.0001	

y: inhibition percentage; A1: bottom asymptote; A2: top asymptote; LOGx0: center; x: log_{10} [concentration]; p: hill slope; r²: coefficient of determination; *F*: value obtained by the *F*-test; Prob > F: probability value (*p* model, *F* < 0.0001).

Compound	Ec	Equation: $y = A1 + \frac{(A2 - A1)}{(1 + 10^{((LOGx0 - x)p)})}$			Statistical data		
	A1	A2	LOGx0	р	r^2	F	$\operatorname{Prob} > F$
1a	7.52	103.65	-0.82	2.43	0.9924	709.56	< 0.0001
1b	4.23	102.36	-0.74	2.92	0.9977	1931.19	< 0.0001
1c	11.44	104.41	-0.86	2.09	0.9931	907.90	< 0.0001
1d	5.45	111.99	-0.74	1.45	0.9775	260.04	< 0.0001
2a	15.41	102.44	-0.79	2.35	0.9819	366.23	< 0.0001
2b	11.50	115.84	-0.66	1.23	0.9896	719.19	< 0.0001
2c	22.81	102.68	-0.93	2.20	0.9946	1803.72	< 0.0001
2d	17.27	101.79	-0.84	2.77	0.9894	655.81	< 0.0001
3a	16.70	100.29	-0.79	2.75	0.9920	823.89	< 0.0001
3b	10.33	118.34	-0.64	1.24	0.9701	231.69	< 0.0001
3c	20.52	102.03	-0.98	2.00	0.9988	8121.37	< 0.0001
3d	16.44	103.89	-0.82	2.38	0.9905	732.78	< 0.0001

Table S2. Regression equations for the inhibition of *H. vastatrix* spore germination *versus* the log of the allyldithiocarbimate salts concentrations, equation parameters and statistical data (second experiment with three replicates *per* treatment)

y: inhibition percentage; A1: bottom asymptote; A2: top asymptote; LOGx0: center; x: log_{10} [concentration]; p: hill slope; r²: coefficient of determination; *F*: value obtained by the *F*-test; Prob > F: probability value (*p* model, *F* < 0.0001).

Table S3. Concentrations	of the allyldithiocarbimate	salts to inhibit	50% (IC ₅₀) and 90%	(IC ₉₀) spor	e germination o	of
P. pachyrhizi and H. vasta	trix (second experiment with	h three replicate	es <i>per</i> treati	ment)			

	Fungi							
Compound	P. pach	yrhizi	H. vastatrix					
	IC ₅₀ / (µmol L ⁻¹)	IC ₉₀ / (µmol L ⁻¹)	IC ₅₀ / (µmol L ⁻¹)	$IC_{90} / (\mu mol \ L^{-1})$				
1a	87	232	139	320				
1b	66	178	172	349				
1c	30	215	117	311				
1d	30	199	146	462				
2a	70	213	134	344				
2b	49	304	141	538				
2c	45	151	87	251				
2d	58	221	122	276				
3a	62	278	141	333				
3b	63	304	147	524				
3c	52	237	79	252				
3d	48	279	125	306				

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) shelx

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: shelx

Bond precision:	C-C = 0.0094 A	Wavelengt	h=0.71073
Cell:	a=7.8085(4) b=1 alpha=90 bet	.4.1824(7) ;a=93.209(2)	c=32.5064(19) gamma=90
Temperature:	296 K		2
	Calculated	Reported	
Volume	3594.2(3)	3594.2(3)
Space group	P 21/c	P 21/c	
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C24 H20 P, C13 H13 S3	N2 06 C24 H20 S3	P, C13 H13 N2 O6
Sum formula	C37 H33 N2 O6 P S3	C37 H33	N2 06 P S3
Mr	728.80	728.80	
Dx,g cm-3	1.347	1.347	
Z	4	4	
Mu (mm-1)	0.299	0.299	
F000	1520.0	1520.0	
F000'	1522.51		
h,k,lmax	9,17,40	9,17,40	
Nref	7377	7377	
Tmin,Tmax	0.902,0.926	0.902,0.	926
Tmin'	0.891		
Correction metho AbsCorr = MULTI-	od= # Reported T Lin -SCAN	mits: Tmin=0.902	Tmax=0.926
Data completenes	SS= 1.000	Theta(max) = 26.4	03
R(reflections) =	0.0853(5872)	wR2(reflections)	= 0.3057(7377)
S = 1.087	Npar= 44	4	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level B

PLAT930_ALERT_2_B Check Twin Law (00 1)[10 4] Estimated BASF 0.13

Author Response: strucutre refined as a Non-merohedral twin 2-axis (001) [104] with a basf = 0.04767

Alert level C

PLAT084_ALERT_3_C High wR2 Value (i.e. > 0.25)	0.31	Report
PLAT242_ALERT_2_C_Low 'MainMol' Ueq as Compared to Neighbors of	S1	Check
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of	N1′	Check
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds	0.00938	Ang.
PLAT906_ALERT_3_C Large K value in the Analysis of Variance	2.150	Check
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600	43	Report
PLAT918_ALERT_3_C Reflection(s) with I(obs) much Smaller I(calc) .	5	Check
PLAT939_ALERT_3_C Large Value of Not (SHELXL) Weight Optimized S .	15.43	Check

Alert level G

PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical	?	Check
PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large 0	.17	Report
PLAT083_ALERT_2_G_SHELXL_Second Parameter in WGHT_Unusually_Large 9	. 14	Why ?
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	2	Note
PLAT802_ALERT_4_G CIF Input Record(s) with more than 80 Characters	1	Info
PLAT870_ALERT_4_G ALERTS Related to Twinning Effects Suppressed	1	Info
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min)	1	Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	37	Note
PLAT931_ALERT_5_G Found Twin Law ()[104] Estimated BASF 0	.16	Check

0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 8 ALERT level C = Check. Ensure it is not caused by an omission or oversight 9 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 7 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 27/03/2017; check.def file version of 24/03/2017

Datablock shelx - ellipsoid plot

