Supplementary Information

Identifying New Isatin Derivatives with GSK-3β Inhibition Capacity through Molecular Docking and Bioassays

Karolinni B. Britto,^a Carla S. Francisco,^b Débora Ferreira,^c Bárbara J. P. Borges,^a Raphael Conti,^b Demetrius Profeti, ^b d Ligia R. Rodrigues, ^c Valdemar Lacerda Jr., ^b Pedro A. B. Morais^{*,#,d} and Warley S. Borges ^b *,^{#,a,b}

^aPrograma de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Espírito Santo, 29075-910 Vitória-ES, Brazil

^bPrograma de Pós-Graduação em Química, Universidade Federal do Espírito Santo, 29075-910 Vitória-ES, Brazil

^cCentre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

^dCentro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, 29500-000 Alegre-ES, Brazil

^{*}e-mail: pedro.morais@ufes.br; warley.borges@ufes.br #Both authors contributed equally to this work.

Figure S1. ¹H (black) and ¹³C (red) NMR chemical shifts (ppm) and main heteronuclear multiple bond correlation (HMBC) correlation observed in the NMR data of the compound **2a**. *J* in Hz.

Figure S2. ¹H nuclear magnetic resonance (NMR) spectrum (400 MHz, CDCl₃) of compound 2a.

Figure S3. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 2a.

Figure S4. HMBC spectrum (400 MHz, CDCl₃) of compound 2a.

Figure S5. Attenuated total reflection infrared (ATR-IR) spectrum of compound 2a.

Figure S6. HRMS spectrum of compound 2a.

Figure S7. ¹H (black) and ¹³C (red) NMR chemical shifts (ppm) and main HMBC correlation observed in the NMR data of the compound 2b. *J* in Hz.

Figure S8. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 2b.

Figure S9. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 2b.

Figure S10. HMBC spectrum (400 MHz, CDCl₃) of compound 2b.

Figure S11. ATR-IR spectrum of compound 2b.

Figure S12. HRMS spectrum of compound 2b.

Table S1. NMR data of 2b and comparison with literature (*J* in Hz)

Position	2b (400 MHz, CDCl ₃)		Furdas <i>et al.</i> ¹ (400 MHz, DMSO- d_6)		Makhija <i>et al.</i> ² (500 MHz, CDCl ₃)	Gui et al. ³ (300 MHz, DMSO-d ₆)	
	¹ H	¹³ C	¹ H	¹³ C	$^{1}\mathrm{H}$	$^{1}\mathrm{H}$	¹³ C
2		158.2		158.9			158.5
3		182.4		183.1			182.7
3'		117.7		118.4			117.9
4	7.66 dd (7.8; 0.8)	125.8	7.61-7.56 m	124.9	7.67 d	7.54-7.60 m	124.5
5	7.14 td (7.8; 0.8)	124.4	7.14 t (7.3)	123.9	7.15 t	7.14 t (7.5)	123.7
6	7.50-7.54 m	138.4	7.61-7.56 m	138.3	7.53 t	7.54-7.60 m	137.9
7	6.71 brd (7.8)	110.5	6.95 dd (7.9; 0.4)	111.3	6.72 d	6.94 d (7.8)	110.9
7'		149.9		147.4			149.9
1"		141.8		150.4			143.5
2''; 6''	7.50-7.54 m	124.3	7.74 d (8.4)	128.9	7.53 m	7.73 d (8.7)	123.5
3''; 5''	8.22 d (8.6)	128.1	8.20 d (8.4)	124.1	8.23 d	8.19 d (8.7)	128.5
4"		147.8		143.9			146.9
1''' (<i>Bn</i> –CH ₂)	5.03 s	43.4	5.70 s	42.9	5.10 s		42.5

Figure S13. ¹H (black) and ¹³C (red) NMR chemical shifts (ppm) and main HMBC correlation observed in the NMR data of the compound 2c. J in Hz.

Figure S14. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **2c**.

Figure S15. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 2c.

Figure S16. HMBC spectrum (400 MHz, CDCl₃) of compound 2c.

Figure S17. ATR-IR spectrum of compound 2c.

Figure S18. HRMS spectrum of compound 2c.

Figure S19. ¹H (black) NMR chemical shifts (ppm) data of the compound **2d**. *J* in Hz.

Figure S20. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 2d.

Figure S21. ATR-IR spectrum of compound 2d.

Figure S22. HRMS spectrum of compound 2d.

Table S2. NMR data of 2d and comparison with literature (*J* in Hz)

Decition	2d (400 MHz, CDCl ₃)	Shi et al. ⁴ (400 MHz, CDCl ₃)	Tehrani <i>et al.</i> ⁵ (400 MHz, CDCl ₃) ¹ H	
FOSILIOII	¹ H	ΙΗ		
4	7.62 dd (7.4; 0.8)	7.59-7.66 m	7.65 d (6.0)	
5	7.14 t (7.4)	7.11 td (7.6; 0.8)	7.14 dt (6.8; 0.8)	
6	7.50 td (7.8; 1.2)	7.50 td (7.8; 1.4)	7.53 t (6.6)	
7	6.77 brd (7.8)	6.77 d (8.0)	6.80 d (8.0)	
2''; 6''	7.29-7.35 m	7.29-7.36 m	7.33-7.37 m	
3''; 5''	7.01-7.07 m	7.00-7.08 m	7.04-7.10 m	
1 ^{""} (<i>Bn</i> –CH ₂)	4.90 s	4.90 s	4.93 s	

Figure S23. ¹H (black) and ¹³C (red) NMR chemical shifts (ppm) and main HMBC correlation observed in the NMR data of the compound 2e. J in Hz.

Figure S24. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound **2e**.

Figure S25. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound 2e.

Figure S26. Heteronuclear single quantum coherence spectroscopy (HSQC) spectrum (400 MHz, DMSO-*d*₆) of compound 2e.

Figure S27. HMBC spectrum (400 MHz, DMSO-*d*₆) of compound 2e.

Pa<u>g</u>e 1/1

Figure S28. ATR-IR spectrum of compound 2e.

Figure S29. HRMS spectrum of compound 2e.

Figure S30. ¹H (DMSO-D₆ in black and CDCl₃ in blue) and ¹³C (red) NMR chemical shifts (ppm) data of the compound 2f. *J* in Hz.

Figure S31. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound 2f.

Figure S32. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 2f.

Figure S33. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 2f.

Figure S34. ATR-IR spectrum of compound 2f.

Figure S35. HRMS spectrum of compound 2f.

Table S3. NMR data of **2f** and comparison with literature (J in Hz)

Position	2f (400 MHz, DMSO- <i>d</i> ₆)	$DMSO-d_6) 2f (400 \text{ MHz, CDCl}_3)$		Bouhfid <i>et al.</i> ⁶ (300 MHz, CDCl ₃)		Macpherson <i>et al.</i> ⁷ (400 MHz, CD_3OD)
	$^{1}\mathrm{H}$	$^{1}\mathrm{H}$	¹³ C	$^{1}\mathrm{H}$	¹³ C	1H
2	_	_	157.1	_	158.6	_
3	-	-	182.5	_	182.7	-
3'	-	_	117.7	_	117.4	-
4	7.60 brd (7.4)	7.62-7.67 m	125.5	7.22-7.63 m	126.2	7.26 m
5	7.19 t (7.4)	7.18 td (7.8; 0.8)	124.2	7.22-7.63 m	125.2	7.17 m
6	7.72 brt (7.8)	7.62-7.67 m	138.4	7.22-7.63 m	139.3	7.43 d
7	7.24 brd (7.4)	7.13 brd (7.8)	111.1	7.22-7.63 m	111.7	7.17 m
7'	-	_	149.6	_	149.4	-
1"	4.56 d (2.3)	4.53 d (2.3)	29.4	4.52 d (2.4)	36.8	4.56 m
2"	-	-	75.6	-	_	-
3''	3.34 m	2.31 t (2.3)	73.3	2.35 t (2.4)	73.9	2.68 t

Figure S36. ATR-IR spectrum of compound k.

Figure S37. HRMS spectrum of compound k.

Figure S38. ATR-IR spectrum of compound l.

Figure S39. HRMS spectrum of compound l.

Figure S40. ¹H (black) and ¹³C (red) NMR chemical shifts (ppm) and main HMBC correlation observed in the NMR data of the compound 4h. J in Hz.

Figure S41. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound **4h**.

Figure S42. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound 4h.

Figure S43. HMBC spectrum (400 MHz, DMSO-*d*₆) of compound 4h.

Figure S44. ATR-IR spectrum of compound 4h.

Figure S45. HRMS spectrum of compound 4h.

Figure S46. ¹H (black) and ¹³C (red) NMR chemical shifts (ppm) and main HMBC correlation observed in the NMR data of the compound 4i. J in Hz.

Figure S47. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound 4i.

Figure S48. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound 4i.

Figure S49. HMBC spectrum (400 MHz, DMSO-*d*₆) of compound 4i.

Figure S50. ATR-IR spectrum of compound 4i.

Figure S51. HRMS spectrum of compound 4i.

Figure S52. ¹H (black) and ¹³C (red) NMR chemical shifts (ppm) and main HMBC correlation observed in the NMR data of the compound 4j. J in Hz.

Figure S53. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound 4j.

Figure S54. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound 4j.

Figure S55. HMBC spectrum (400 MHz, DMSO-*d*₆) of compound 4j.

Figure S56. ATR-IR spectrum of compound 4j.

Figure S57. HRMS spectrum of compound 4j.

Figure S58. ¹H (black) and ¹³C (red) NMR chemical shifts (ppm) and main HMBC correlation observed in the NMR data of the compound 4k. J in Hz.

Figure S59. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound **4**k.

Figure S60. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound 4k.

Figure S61. HMBC spectrum (400 MHz, DMSO-*d*₆) of compound **4**k.

Figure S62. ATR-IR spectrum of compound 4k.

Figure S63. HRMS spectrum of compound 4k.

Figure S64. ¹H (black) and ¹³C (red) NMR chemical shifts (ppm) and main HMBC correlation observed in the NMR data of the compound 4I. J in Hz.

Figure S65. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound **41**.

Figure S66. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound 41.

Figure S67. HSQC spectrum (100 MHz, DMSO-*d*₆) of compound 4l.

Figure S68. HMBC spectrum (400 MHz, DMSO-*d*₆) of compound 41.

Page 1/1

Figure S69. ATR-IR spectrum of compound 4l.

Figure S70. HRMS spectrum of compound 4l.

Figure S71. Dose-response curves generated by GraphPad Prism⁸ program for compounds **2a-e** and **4h-l** studied against GSK-3 β enzyme, used to calculate the IC₅₀ values.

References

- 1. Furdas, S. D.; Shekfeh, S.; Kannan, S.; Sippl, W.; Jung, M.; MedChemComm 2012, 3, 305.
- 2. Makhija, M. T.; Kasliwal, R. T.; Kulkarni, V. M.; Neamati, N.; Bioorg. Med. Chem. 2004, 12, 2317.
- 3. Gui, J.; Chen, G.; Cao, P.; Liao, J.; Tetrahedron: Asymmetry 2002, 23, 554.
- 4. Shi, F.; Tao, Z.-L.; Luo, S.-W.; Tu, S.-J.; Gong, L.-Z.; Chem. Eur. J. 2012, 18, 6885.
- 5. Tehrani, K. H. M. E.; Hashemi, M.; Hassan, M.; Kobarfard, F.; Mohebbi, S.; Chin. Chem. Lett. 2016, 27, 221.
- 6. Bouhfid, R.; Joly, N.; Essassi, E. M.; Lequart, V.; Massoui, M.; Martin, P.; Synth. Commun. 2011, 41, 2096.
- Macpherson, L. J.; Dubin, A. E.; Evans, M. J.; Marr, F.; Schultz, P. G.; Cravatt, B. F.; Patapoutian, A.; *Nature* 2007, 445, 541.
- 8. GraphPad Prism, 6.00 version; GraphPad Software Inc., San Diego, USA, 2018.

