Supplementary Information

An Acetal Acylation Methodology for Producing Diversity of Trihalomethyl-1,3-dielectrophiles and 1,2-Azole Derivatives

Valéria D. O. Bareño,^a Daiane S. Santos,^a Leandro M. Frigo,^b Debora L. de Mello,^b Juliana L. Malavolta,^b Rogerio F. Blanco,^b Lucas Pizzuti,^c Darlene C. Flores^a and Alex F. C. Flores ^(a) *^{,a}

^aEscola de Química e Alimentos, Universidade Federal do Rio Grande, 96203-900 Rio Grande-RS, Brazil

^bDepartamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil

^cFaculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, 79804-970 Dourados-MS, Brazil

Figure S1. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxyundec-3-en-2-one (3a).

^{*}e-mail: alex.fcf.furg@gmail.com

Figure S2. ¹³C NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxyundec-3-en-2-one (3a).

Figure S3. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxydodec-3-en-2-one (3b).

Figure S4. ¹³C NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxydodec-3-en-2-one (3b).

Figure S5. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxytridec-3-en-2-one (3c).

Figure S6. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxytridec-3-en-2-one (3c).

Figure S7. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxypentadec-3-en-2-one (3e).

Figure S8. ¹H NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxypentadec-3-en-2-one (3e).

Figure S9. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxyheptadec-3-en-2-one (3f).

Figure S10. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxyheptadec-3-en-2-one (3f).

Figure S11. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-8-methylnon-3,7-dien-2-one (3g).

Figure S12. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-8-methylnon-3,7-dien-2-one, expanded between 1.0-6.0 ppm (**3g**).

Figure S13. ¹³C NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-8-methylnon-3,7-dien-2-one (3g).

Figure S14. ¹³C NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-8-methylnon-3,7-dien-2-one, expanded between 15-58 ppm (**3g**).

Figure S15. ¹H NMR spectrum (200 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-6-phenylhex-3-en-2-one (**3h**).

Figure S16. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-6-phenylhex-3-en-2-one (3h).

Figure S17. ¹³C NMR spectrum (50 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-6-phenylhex-3-en-2-one (3h).

Figure S18. EI mass spectrum (70 eV) of the 1,1,1-trifluoro-4-methoxy-6-phenylhex-3-en-2-one (3h).

Figure S19. ESI-MS spectrum of the 1,1,1-trifluoro-4-methoxy-6-(4-hydroxyphenyl)hex-3-en-2-one (3i).

Figure S20. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-6-(4-methoxy phenyl)hex-3-en-2-one (**3j**).

Figure S21. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-6-(4-methoxy phenyl)hex-3-en-2-one (**3j**).

Figure S22. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-6-(4-methoxy phenyl)hex-3-en-2-one (**3j**).

Figure S23. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-6-(4-methoxy phenyl)hex-3-en-2-one, expanded between 110-160 ppm (top), and 176-187 ppm (bottom) (**3j**).

Figure S24. ESI-MS spectrum of the 1,1,1-trifluoro-4-methoxy-6-(4-methoxy phenyl)hex-3-en-2-one (3j).

Figure S25. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-5-thiomethylhex-3-en-2-one (3k).

Figure S28. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-5-(2-methoxy phenyl)pent-3-en-2-one (**3l**).

Figure S29. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-5-(2-methoxy phenyl)pent-3-en-2-one (**3l**).

Figure S30. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-5-(2-methoxy phenyl)pent-3-en-2-one, expanded between 110-185 ppm (**3**).

Figure S31. ¹⁹F NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-5-(2-methoxy phenyl)pent-3-en-2-one (**3l**).

Figure S32. ¹H NMR spectrum (400 MHz, CDCl₃) of the methyl 7,7,7-trifluoro-4-methoxy-6-oxohep-4-enoate (3m).

Figure S33. ¹³C NMR spectrum (100 MHz, CDCl₃) of the methyl 7,7,7-trifluoro-4-methoxy-6-oxohept-4-enoate (3m).

Figure S34. EI Mass spectrum (70 eV) of the methyl 7,7,7-trifluoro-4-methoxy-6-oxohept-4-enoate (3m).

Figure S35. ¹H NMR spectrum (400 MHz, CDCl₃) of the methyl 8,8,8-trifluoro-5-methoxy-7-oxooct-4-enoate (3m).

Figure S36. ¹H NMR spectrum (400 MHz, CDCl₃) of the 3-(ethoxymethylene)-1,1,1-trifluorotridecan-2-one (3v).

Figure S37. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 3-(ethoxymethylene)-1,1,1-trifluorotridecan-2-one (3v).

Figure S38. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 3-(ethoxymethylene)-1,1,1-trifluorotridecan-2-one, expanded between 110-125 ppm (**3v**).

Figure S39. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 3-(ethoxymethylene)-1,1,1-trifluorotridecan-2-one, expanded between 163-182 ppm (**3v**).

Figure S40. ESI MS spectrum of the 3-(ethoxymethylene)-1,1,1-trifluorotridecan-2-one, experimental and simulated spectra.

Figure S41. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1-chloro-3-(ethoxymethylene)-1,1-difluorotridecan-2-one (**7v**).

Figure S42. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1-chloro-3-(ethoxymethylene)-1,1-difluorotridecan-2-one (**7v**).

Figure S43. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1-chloro-3-(ethoxymethylene)-1,1-difluorotridecan-2-one, expanded between 27-33 ppm (**7v**).

Figure S44. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1-chloro-3-(ethoxymethylene)-1,1-difluorotridecan-2-one, expanded between 114-126 ppm (**7v**).

Figure S45. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1-chloro-3-(ethoxymethylene)-1,1-difluorotridecan-2-one, expanded between 162-183 ppm (**7v**).

Figure S46. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trichloro-3-(ethoxymethylene)tridecan-2-one (**4v**) and ethyl trichloroacetate.

Figure S47. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trichloro-3-(ethoxymethylene)tridecan-2-one (**4v**) and ethyl trichloroacetate.

Figure S48. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trichloro-3-(ethoxymethylene)-tridecan-2-one (**4v**) and ethyl trichloroacetate.

Figure S49. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trichloro-3-(ethoxymethylene)-tridecan-2-one (**4v**) and ethyl trichloroacetate, expanded between 12-33 ppm.

Figure S50. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trichloro-4-methoxy-8-methylnon-3,7-dien-2-one (4g).

Figure S51. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trichloro-4-methoxy-8-methylnon-3,7-dien-2-one (**4g**), expanded between 5.0-5.3 ppm.

Figure S52. ¹³C NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trichloro-4-methoxy-8-methylnon-3,7-dien-2-one (**4g**), expanded between 1.0-6.0 ppm.

Figure S53. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trichloro-4-methoxy-8-methylnon-3,7-dien-2-one (**4g**), expanded between 1.0-6.0 ppm.

Figure S54. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trichloro-4-methoxy-5-thiomethylhex-3-en-2-one (4k).

Figure S55. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trichloro-4-methoxy-5-thiomethylhex-3-en-2-one (4k).

Figure S56. EI mass spectrum (70 eV) of the 1,1,1-trichloro-4-methoxy-5-thiomethylhex-3-en-2-one (4k).

Figure S57. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trichloro-4-methoxy-6-phenylhex-3-en-2-one (4h).

Figure S58. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trichloro-4-methoxy-6-phenylhex-3-en-2-one (4h).

Figure S59. ¹H NMR spectrum (400 MHz, CDCl₃) of the methyl 7,7,7-trichloro-4-methoxy-6-oxohept-4-enoate (4m).

Figure S60. ¹³C NMR spectrum (100 MHz, CDCl₃) of the methyl 7,7,7-trichloro-4-methoxy-6-oxohept-4-enoate (4m).

Figure S61. EI mass spectrum (70 eV) of the methyl 7,7,7-trichloro-4-methoxy-6-oxohept-4-enoate (4n).

Figure S62. ¹H NMR spectrum (400 MHz, CDCl₃) of the methyl 7-chloro-7,7-difluoro-4-methoxy-6-oxohept-4-enoate (**7m**).

Figure S63. ¹³C NMR spectrum (100 MHz, CDCl₃) of the methyl 7-chloro-7,7-difluoro-4-methoxy-6-oxohept-4-enoate (**7m**).

Figure S64. ¹³C NMR spectrum (100 MHz, CDCl₃) of the methyl 7-chloro-7,7-difluoro-4-methoxy-6-oxohept-4-enoate (**7m**), expanded between 114-187 ppm.

Figure S65. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-6-phenylhexan-2,4-dione (5h).

Figure S66. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-6-phenylhexan-2,4-dione (5h).

Figure S67. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-6-phenylhexan-2,4-dione (**5h**), expanded between 110-150 ppm.

Figure S68. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-6-phenylhexan-2,4-dione (**5h**), expanded between 172-200 ppm.

Figure S69. ¹⁹F NMR spectrum (376 MHz, CDCl₃) of the 1,1,1-trifluoro-6-phenylhexan-2,4-dione (5h).

Figure S70. ESI MS-MS spectrum of the 1,1,1-trifluoro-4-methoxy-6-phenylhexan-2,4-dione (5h).

Figure S71. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-6-(4-hydroxyphenyl)-hexan-2,4-dione (5i).

Figure S72. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trifluoro-6-(4-hydroxyphenyl)-hexan-2,4-dione (5i).

Figure S73. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trifluoro-4-methoxy-6-(4-hydroxyphenyl)-hex-3-en-2-one (**5i**), expanded between 111-131 ppm.

Figure S74. ¹H NMR spectrum (400 MHz, CDCl₃) of the 1,1,1-trifluoro-6-(4-methoxyphenyl)hexan-2,4-dione (5j).

Figure S75. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 1,1,1-trifluoro-6-(4-methoxyphenyl)hexan-2,4-dione (5j).

expanded between 90-200 ppm.

Figure S77. ¹⁹F NMR spectrum (376 MHz, CDCl₃) of the 1,1,1-trifluoro-6-(4-methoxyphenyl)hexan-2,4-dione (5j).

Figure S78. ¹H NMR spectrum (400 MHz, CDCl₃) of the 5-hydroxy-3-phenethyl-5-(trifluoromethyl)-4,5dihydroisoxazol (**8h**).

Figure S79. ¹H NMR spectrum (400 MHz, CDCl₃) of the 5-hydroxy-3-phenethyl-5-(trifluoromethyl)-4,5dihydroisoxazol (**8h**), expanded between 1.6-3.8 ppm.

Figure S80. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 5-hydroxy-3-phenethyl-5-(trifluoromethyl)-4,5-dihydroisoxazol (**8h**).

Figure S81. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 5-hydroxy-3-phenethyl-5-(trifluoromethyl)-4,5dihydroisoxazol (**8h**), expanded between 95-145 ppm.

Figure S82. ¹³C DEPT NMR spectrum (100 MHz, CDCl₃) of the 5-hydroxy-3-phenethyl-5-(trifluoromethyl)-4,5- dihydroisoxazole (**8h**), expanded between 1.6-3.8 ppm.

Figure S83. ¹H NMR spectrum (400 MHz, CDCl₃) of the 5-hydroxy-3-(2-methoxyphenyl)methyl-5-(trifluoromethyl)-4,5-dihydroisoxazole (**8**).

Figure S84. ¹H NMR spectrum (400 MHz, CDCl₃) of the 5-hydroxy-3-(2-methoxyphenyl)methyl-5-(trifluoromethyl)-4,5-dihydroisoxazole (**8**I), expanded between 2.7-4.3 ppm.

Figure S85. ¹H NMR spectrum (400 MHz, CDCl₃) of the 5-hydroxy-3-(2-methoxyphenyl)methyl-5-(trifluoromethyl)-4,5-dihydroisoxazole (**8**I), expanded between 6.8-7.4 ppm.

Figure S86. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 5-hydroxy-3-(2-methoxyphenyl)methyl-5-(trifluoromethyl)-4,5-dihydroisoxazole (**8**).

Figure S87. ¹³C NMR spectrum (100 MHz, CDCl₃) of the 5-hydroxy-3-(2-methoxyphenyl)methyl-5-(trifluoromethyl)-4,5-dihydroisoxazole (**8**I), expanded between 100-162 ppm.

Figure S88. ¹³C DEPT NMR spectrum (100 MHz, CDCl₃) of the 5-hydroxy-3-(2-methoxyphenyl)methyl-5-(trifluoromethyl)-4,5-dihydroisoxazole (**8**I).

Figure S89. ¹H NMR spectrum (400 MHz, CDCl₃) of 3-(2-phenylethyl)-5-trifluoromethyl-1*H*-pyrazole (12h).

Figure S90. ¹³C NMR spectrum (400 MHz, CDCl₃) of 3-(2-phenylethyl)-5-trifluoromethyl-1*H*-pyrazole (12h).

Figure S91. ¹⁹F NMR spectrum (376 MHz, CDCl₃) of 3-(2-phenylethyl)-5-trifluoromethyl-1*H*-pyrazole (12h).

Figure S92. ¹H NMR spectrum (400 MHz, CDCl₃) of 3-[2-(4-methoxyphenyl)ethyl]-5-trifluoromethyl-1*H*-pyrazole (**12j**).

Figure S93. ¹³C NMR spectrum (400 MHz, CDCl₃) of 3-[2-(4-methoxyphenyl)ethyl]-5-trifluoromethyl-1*H*-pyrazole (**12j**).

Figure S94. ¹³C NMR spectrum (400 MHz, CDCl₃) of 3-[2-(4-methoxyphenyl)ethyl]-5-trifluoromethyl-1*H*-pyrazole (**12j**), expanded between 100-163 ppm.

Figure S95. ¹H NMR spectrum (400 MHz, CDCl₃) of ethyl 3-(2-phenylethyl)-1*H*-pyrazole-5-carboxylate(13h).

Figure S96. ¹³C NMR spectrum (400 MHz, CDCl₃) of ethyl 3-(2-phenylethyl)-1*H*-pyrazole-5-carboxylate (13h).

Figure S97. DEPT135 ¹³C NMR spectrum (400 MHz, CDCl₃) of ethyl 3-(2-phenylethyl)-1*H*-pyrazole-5-carboxylate (**13h**).

Figure S98. ¹H NMR spectrum (400 MHz, CDCl₃) of 2-methoxyethyl 3-(2-phenylethyl)-1*H*-pyrazole-5-carboxylate (**14h**).

Figure S99. ¹³C NMR spectrum (400 MHz, CDCl₃) of 2-methoxyethyl 3-(2-phenylethyl)-1*H*-pyrazole-5-carboxylate (**14h**).

Figure S100. DEPT135 ¹³C NMR spectrum (400 MHz, CDCl₃) of 2-methoxyethyl 3-(2-phenylethyl)-1*H*-pyrazole-5-carboxylate (**14h**).

Figure S101. ¹H NMR spectrum (400 MHz, CDCl₃) of 5-trichloromethyl-3-heptyl-5-hydroxy-4,5-dihydroisoxazole (9a).

Figure S102. ¹³C NMR spectrum (400 MHz, CDCl₃) of 5-trichloromethyl-3-heptyl-5-hydroxy-4,5-dihydroisoxazole (9a).

Figure S103. ¹H NMR spectrum (400 MHz, CDCl₃) of 5-trichloromethyl-3-octyl-5-hydroxy-4,5-dihydroisoxazole (9b).

Figure S104. ¹³C NMR spectrum (400 MHz, CDCl₃) of 5-trichloromethyl-3-octyl-5-hydroxy-4,5-dihydroisoxazole (**9b**).

Figure S105. ¹H NMR spectrum (400 MHz, CDCl₃) of 5-trichloromethyl-3-nonyl-5-hydroxy-4,5-dihydroisoxazole (9c).

Figure S106. ¹³C NMR spectrum (400 MHz, CDCl₃) of 5-trichloromethyl-3-nonyl-5-hydroxy-4,5-dihydroisoxazole (9c).

Figure S107. ¹H NMR spectrum (400 MHz, CDCl₃) of 5-trichloromethyl-3-undecyl-5-hydroxy-4,5-dihydroisoxazole (9e).

Figure S108. ¹³C NMR spectrum (400 MHz, CDCl₃) of 5-trichloromethyl-3-undecyl-5-hydroxy-4,5-dihydroisoxazole (9e).

Figure S109. ¹H NMR spectrum (400 MHz, CDCl₃) of 5-trichloromethyl-3-tridecyl-5-hydroxy-4,5-dihydroisoxazole (9f).

Figure S110. ¹H NMR spectrum (400 MHz, CDCl₃) of 5-trichloromethyl-3-tridecyl-5-hydroxy-4,5-dihydroisoxazole (**9f**), expanded between 0.6-4.2 ppm.

Figure S111. ¹³C NMR spectrum (400 MHz, CDCl₃) of 5-trichloromethyl-3-tridecyl-5-hydroxy-4,5-dihydroisoxazole (**9f**).

Figure S112. ¹H NMR spectrum (400 MHz, CDCl₃) of 5-trichloromethyl-3-(4-methyl-3-penten-1-yl)-5-hydroxy-4,5-dihydroisoxazole (**9g**).

Figure S113. ¹H NMR spectrum (400 MHz, CDCl₃) of 5-trichloromethyl-3-(4-methyl-3-penten-1-yl)-5-hydroxy-4,5dihydroisoxazole (**9g**), expanded between 1.0-6.0 ppm.

Figure S114. ¹³C NMR spectrum (400MHz, CDCl₃) of 5-trichloromethyl-3-(4-methyl-3-penten-1-yl)-5-hydroxy-4,5-dihydroisoxazole (**9g**).

Figure S115. ¹³C DEPT NMR spectrum (400MHz, CDCl₃) of of 5-trichloromethyl-3-(4-methyl-3-penten-1-yl)-5-hydroxy-4,5-dihydroisoxazole (**9g**).

Figure S116. ¹H NMR spectrum (400MHz, CDCl₃) of 5-trichloromethyl-3-heptylisoxazole (11a).

Figure S117. ¹³C NMR spectrum (400MHz, CDCl₃) of 5-trichloromethyl-3-heptylisoxazole (11a).

Figure S118. ¹H NMR spectrum (400MHz, CDCl₃) of 5-trichloromethyl-3-nonylisoxazole (11d).

Figure S119. ¹³C NMR spectrum (400MHz, CDCl₃) of 5-trichloromethyl-3-nonylisoxazole (11d).

Figure S120. ¹³C DEPT135 NMR (400 MHz, CDCl₃) spectrum of 5-trichloromethyl-3-nonylisoxazole (11d).

Figure S121. ¹H NMR (400 MHz, CDCl₃) spectrum of 5-trichloromethyl-3-undecylisoxazole (11e).

Figure S122. ¹³C NMR (400 MHz, CDCl₃) spectrum of 5-trichloromethyl-3-undecylisoxazole (11e).

Figure S123. ¹H NMR (400 MHz, CDCl₃) spectrum of 5-trichloromethyl-3-tridecylisoxazole (11f).

Figure S124. ¹³C NMR (400 MHz, CDCl₃) spectrum of 5-trichloromethyl-3-tridecylisoxazole (11f).

Figure S125. Mass spectra of 5-trichloromethyl-3-heptyl-5-hydroxy-4,5-dihydro isoxazole (9a).

Figure S126. Mass spectra of 5-trichloromethyl-3-nonyl-5-hydroxy-4,5-dihydroisoxazole (9d).

Figure S127. Mass spectra of 5-trichloromethyl-3-undecyl-5-hydroxy-4,5-dihydroisoxazole (9e)

Figure S128. Mass spectra of 5-trichloromethyl-3-tridecyl-5-hydroxy-4,5-dihydroisoxazole (9f).

Figure S129. Mass spectra of of 5-trichloromethyl-3-heptylisoxazole (11a).

Figure S130. Mass spectra of of 5-trichloromethyl-3-octylisoxazole (11c).

Figure S131. Mass spectra of of 5-trichloromethyl-3-nonylisoxazole (11d).

Figure S132. Mass spectra of of 5-trichloromethyl-3-undecylisoxazole (11e).

Table S1. ¹ H NMR d	data for 5-hydroxy	y-5-trichloromethyl-4	4,5-dihydroisoxazoles	(9a-g)
--------------------------------	--------------------	-----------------------	-----------------------	--------

Compound	δ / ppm (multiplicity, J / Hz)						
(yield / %)	H-4a	H-4b	α -CH ₂	β-CH ₂	Other	Me	
9a (85)	3.55 (d, 18.4)	3.12 (d, 18.4)	2.32 (t, 7.6)	1.51 (m)	1.25 (6H, m, 3CH ₂)	0.81 (t, 6.8)	
9b (92)	3.55 (d, 18.4)	3.12 (d, 18.4)	2.32 (t, 7.6)	1.51 (m)	1.49 (2H, m, CH ₂); 1.23 (8H,	0.81 (t, 6.8)	
					m, -CH ₂ -)		
9c (95)	3.60 (d, 18.5)	3.16 (d, 18.5)	2.38 (t, 7.6)	1.58 (m)	1.58 (2H, m, CH ₂); 1.33 (10H,	0.88 (t, 6.8)	
					m, -CH ₂ -)		
9d (92)	3.63 (d, 18.4)	3.20 (t, 18.4)	2.41 (t, 7.6)	1.58 (m)	1.59 (2H, m, CH ₂); 1.33 (12H,	0.89 (t, 6.8)	
					m, -CH ₂ -)		
9e (90)	3.63 (d, 18.4)	3.19 (d, 18.4)	2.41 (t, 7.8)	1.60 (m)	1.26-1.34 (16H, m, –CH ₂ –)	0.90 (t, 6.8)	
9f (69)	3.64 (d, 18.4)	3.20 (d, 18.4)	2.40 (t, 7.6)	1.58 (m)	1.27 (18H, m, –CH ₂ –)	0.90 (t, 6.8)	
9g (89)	3.61 (d, 18.4)	3.17 (d, 18.4)	2.44 (m)	2.30 (m)	5.11 (tt, 7.0 and 1.2); 1.70 (s,	_	
					3H, Me); 1,63 (s, 3H, Me)		

 δ : chemical shift; *J*: coupling constant; d: doublet; t: triplet; m: multiplet; tt: triplet of triplet.

Compound	δ / ppm						
	C-3	C-4	C-5	CCl ₃	Other		
9a	160.6	46.1	110.5	101.1	31.3; 28.6; 27.5; 26.1; 22.4; 13.9		
9b	160.7	46.1	110.5	101.1	31.5; 28.9; 28.8; 27.5; 26.2; 22.5; 14.0		
9c	160.5	46.0	110.4	101.0	31.8; 29.3; 29.16; 29.12; 28.9; 27.5; 26.2; 22.6; 14.0		
9d	160.3	46.0	110.4	101.1	31.8; 29.5; 29.3; 29,2; 29.1; 28.9; 27.5; 26.2; 22.5; 13.9		
9e	160.5	46.0	110.4	101.1	31.8; 29.6; 29.57; 29.5; 29.4; 29.3; 29.1; 27.5; 26.2; 22.6; 14.0		
9f	160.7	46.1	110.4	101.5	31.8; 29.6; 29.57; 29.5; 29.4; 29.3; 29.1; 29.0; 27.5; 26.2; 22.6;		
					14.0		
9g	160.1	46.1	110.5	101.1	133.6; 122.0; 27.7; 25.5; 24.9; 17.7		

Table S2. ¹³C NMR data for 5-hydroxy-5-trichloromethyl-4,5-dihydroisoxazoles (9a-g)

Table S3. ¹H NMR data for 5-trichloromethylisoxazoles (11a-f)

Compound	δ / ppm (multiplicity, J / Hz)						
(yield / %)	H-4	a-CH ₂	β-CH ₂	Other	Me		
11a (95)	6.45 (s)	2.67 (t, 7.6)	1.70 (m)	1.25-1.40 (6H, m, –CH ₂ –)	0.88 (t, 7.2)		
11b (92)	6.46 (s)	2.68 (t, 7.6)	1.69 (m)	1.25-1.40 (8H, m, -CH ₂ -)	0.88 (t, 7.0)		
11c (95)	6.45 (s)	2.67 (t, 7.6)	1.70 (m)	1.28-1.38 (10H, m, -CH ₂ -)	0.88 (t, 7.2)		
11d (92)	6.43 (s)	2.68 (t, 7.6)	1.58 (m)	1.26-1.40 (12H, m, -CH ₂ -)	0.89 (t, 7.0)		
11e (95)	6.45 (s)	2.67 (t, 7.8)	1.60 (m)	1.26-1.34 (16H, m, -CH ₂ -)	0.88 (t, 7.2)		
11f (96)	6.64 (s)	2.68 (t, 7.6)	1.58 (m)	1.27-1.35 (18H, m, –CH ₂ –)	0.89 (t, 7.2)		

 δ : chemical shift; *J*: coupling constant; s: singlet; t: triplet; m: multiplet.

Table S4. ¹³C NMR data for 5-trichloromethylisoxazoles (11a-f)

Compound _	δ / ppm							
	C-3	C-4	C-5	CCl ₃	Other			
11a	168.4	103.3	164.3	84.8	31.6; 29.0; 28.0; 26.1; 22.6; 14.0			
11b	168.4	103.3	164.3	84.8	31.6; 29.1; 28.8; 28.1; 26.1; 22.5; 14.0			
11c	168.5	103.3	164.3	84.8	31.8; 29.4; 29.2; 29.18; 29.1; 28.0; 26.1; 22.6; 14.0			
11d	168.5	103.3	164.3	84.8	31.8; 29.5; 29.4; 29.3; 29.16; 29.1; 27.9; 26.1; 22.6; 14.0			
11e	168.4	103.2	164.3	84.9	31.8; 29.6; 29.57; 29.5; 29.4; 29.3; 29.1; 27.5; 26.2; 22.6; 14.0			
11f	168.4	103.2	164.3	84.8	31.9; 29.64; 29.6; 29.5; 29.4; 29.3; 29.2; 29.0; 28.0; 26.1; 22.6; 14.0			

Scheme S1. Proposed reaction mechanism for cyclocondensation and dehydration process.