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Figures of sensing mechanism
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Figure S1. Time dependence of the fluorescence response of (a) a, a-Cu''; and (b) b, b-Cu'" (2 umol L, respectively) in

DMF-buffer (tris-HCI, 1.0 mmol L%, pH 7.4, 1:1, v/v) (ex: 540 nm; em: 570 nm; slit= 2.5/ 5).
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Figure S2. (a) Fluorescence (2.0 pmol L) and (b) UV-Vis (2.0 pmol L) spectra of sensor a in DMF-buffer (tris-HCI,
1.0 mmol L%, pH 7.4, 1:1, v/v) upon addition of different concentrations of Cu" (0-ca. 1.2 equiv.) (ex: 540 nm; slit = 2.5

/5).

Figure S3. Fluorescence emission spectrum comparison of a-Cu'" (2.0 pmol L), a-Cu" + Cys and compound 2 in
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DMF-buffer (tris-HCI, 1.0 mmol L, pH 7.4, 1:1, v/v) (ex: 530 nm; em: 560 nm; slit= 2.5/ 5).

Effect of pH value

As the experimental results are based on the chemical reaction between compound a-Cu" and Cys, we

hypothesized that the reaction rate might impact the observed spectrum changes. We therefore studied the impact of the

reaction time on the sensing effect (Figure S4). The fluorescence intensity reached a plateau after approximately

20 min, showing that the sensor can detect Cys in real-time.
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Figure S4. Time-dependent fluorescent intensity of a-Cu'" (2.0 umol L) upon addition of Cys in DMF-buffer (tris-
HCI, 1.0 mmol L%, pH 7.4, 1:1, v/v) (ex: 530 nm; em: 560 nm; slit=2.5/5).

Kinetic studies

To confirm the biological application of a-Cu" as a Cys sensor, the fluorescence change upon Cys addition was
monitored with respect to pH (Figure S5). Compound a-Cu" + Cys achieved consistent fluorescence between pH 7 and
10.
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Figure S5. pH-dependent fluorescence profiles of a-Cu" (2.0 pmol L) and the corresponding Cys (300 pmol L?) in
DMF-buffer (tris-HCI, 1.0 mmol L%, pH 7.4, 1:1, v/v) (ex: 530 nm; em: 560 nm; slit = 2.5/ 5).

Biocompatible studies

The ability of molecules to selectively recognize guest objects in living tissues is of great significance for
biological applications. First of all, we chose breast carcinoma cell lines (MCF-7) to test the toxicity of a-Cu'". The cell
viability data were described as a percentage bar graph (Figure S6). The viability of untreated cells was considered to be
100%. When the concentration of a-Cu" was 5 pmol L, more than 96% of the MCF-7 cells were kept alive. Even
when the concentration of a-Cu" rose to 50 umol L, approximately 91% of the MCF-7 cells remained alive. Overall,
the sensor a-Cu'" shows low toxicity to MCF-7 cells even the concentration reached 50 pmol L and the incubation time

reached 24 h, indicating that a-Cu" is highly biocompatible.
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Figure S6. Percentage of MCF-7 cell viability after cell treatment with a-Cu" (untreated cells were considered 100%

surviving).

Synthetic procedure of sensor a and compound b

Synthesis of compound 1 [2-(4-(diethylamino)-2-hydroxybenzoyl)benzoic acid]

Compound 1 was synthesized on the basis of a reported procedure.! Briefly, a mixture of o-phthalic anhydride
(8.25 g, 0.05 mol) and 3-diethylaminophenol (9.5 g, 0.064 mol) in methylbenzene (35 mL) was stirred for 18 h by
programmed heating. The subsidence was filtered off, washed with methyl alcohol and dried to give the crude product,
which was further purified by recrystallization from n-butyl alcohol to give 1 as a light pink solid (12.3 g, yield 78%).
mp 200-202 °C; *H NMR (400 MHz, DMSO-dg) 6 1.083 (t, 6H, J 12.0, 2CHs3), 3.369 (q, 4H, J 12.0, 2CH>), 6.078 (s,
1H, ArH), 6.170 (d, 1H, J 8.0, ArH), 6.786 (d, 1H, J 8.0, ArH), 7.368 (d, 1H, J 8.0, ArH), 7.620 (m, 2H, ArH), 7.967 (d,
1H, J 8.0, ArH), 12.592 (s, 1H, COOH), 13.108 (s, 1H, Ar-OH) (according to Nakata et al.?).

Synthesis of compound 2 [2-(6-(diethylamino)-2-formyl-3-oxo-3H-xanthen-9-yl)benzoic acid]

A mixture of compound 1 (0.15 g, 0.48 mmol) and 2,4-dihydroxybenzaldehyde (0.066 g, 0.48 mmol) in
methylsulfonic acid (35 mL) was stirred for 1 h at 90 °C. The reaction mixture was cooled to room temperature and then
poured into ice-cold water (20 mL). The subsidence was filtered off, washed with ice-cold water, and then dried under
vacuum to get the crude product, which was further purified by silica gel column chromatography (CH2Cl,-CH3OH,
300:1, v/v) to produce compound 2 as a pink solid (23 mg, yield 31%). IR (KBr) v /cm™ 3672, 1750, 1625, 1521, 1405,
875, 801, 697; 'H NMR (400 MHz, CDCls) 6 1.18 (t, 6H, J 16.8, 2CHs), 3.37 (q, 4H, J 16.8, 2CH>), 6.39 (d, 1H, J 8.4,
ArH), 6.48 (s, 1H, ArH), 6.57 (d, 1H, J 8.8, ArH), 6.80 (s, 1H, ArH), 7.01 (s, 1H, ArH), 7.22 (d, 1H, J 7.4, ArH), 7.68
(m, 2H, ArH), 8.05 (d, 1H, J 7.2, ArH), 9.57 (s, 1H, ArH), 11.19 (s, 1H, COOH); *C NMR (100 MHz, CDCls) 6 12.38,
44.45, 82.99, 97.67, 104.37, 108.86, 113.24, 117.80, 123.86, 125.07, 125.92, 126.94, 128.72, 129.83, 135.07, 135.49,
149.71, 152.19, 152.47, 157.83, 162.91, 169.28, 194.62; HRMS (ESI) m/z, calcd. for CsH2NOs [M]*: 416.1492,
found: 416.1483.

Synthesis of sensor a [(E)-2-(6-(diethylamino)-2-((2-hydroxyphenylimino)methyl)-3-oxo-3H-xanthen-9-yl)benzoic
acid]
A mixture of 2 (0.1371 g, 0.33 mmol) and 2-aminophenol (0.0546 g, 0.50 mmol) in absolute ethanol (10 mL)

was stirred for 5 h at 85 °C. The subsidence was filtered off, washed with ethanol and dried to give the crude product,

which was further purified by silica gel column chromatography (CH2Cl.-CH3OH, 50:1, v/v) to produce sensor a as a



dark purple solid (0.1344 g, yield 81%). IR (KBr) v / cm* 3417, 3060, 2971, 2919, 2895, 1760, 1691, 1585, 1467,
1344, 1137, 1076, 931, 879, 825, 752; *H NMR (400 MHz, DMSO-ds) & 1.10 (t, 6H, J 8.0, 2CHs), 1.25 (g, 4H, J 8.0,
2CHy), 5.76 (s, 1H, OH), 6.47 (s, 2H, ArH), 6.79 (s, 2H, ArH), 6.93 (d, 1H, J 8.0, ArH), 7.12 (m, 2H, ArH), 7.33 (m,
2H, ArH), 7.77 (m, 2H, ArH), 8.01 (d, 1H, J 8.0, CH=N), 8.87 (s, 1H, ArH), 9.57 (s, 1H, ArH), 11.19 (s, 1H, COOH);
13C NMR (100 MHz, DMSO-ds) 6 12.93, 44.47, 96.79, 103.73, 105.00, 109.17, 117.26, 119.48, 124.60, 125.12, 126.88,
128.03, 128.60, 129.06, 129.76, 130.29, 133.59, 134.27, 134.70, 136.07, 140.50, 149.77, 15157, 152.42, 153.91,
154.75, 160.67, 169.27, 199.07; HRMS (ESI) m/z, calcd. for CsiHz7N,Os [M]*: 507.1914, found: 507.1908.

Synthesis of compound b [(E)-2-(6-(diethylamino)-3-oxo-2-((phenylimino)methyl)-3H-xanthen-9-yl)benzoic acid]

A mixture of 2 (0.1371g, 0.33 mmol) and phenylamine (0.0316 g, 0.50 mmol) in absolute ethanol (10 mL) was
stirred for 5 h at 85 °C. The subsidence was filtered off, washed with ethanol and dried to give the crude product, which
was further purified by silica gel column chromatography (CH2Cl,-CHsOH, 100:1, v/v) to produce compound b as a
pink solid (0.1194 g, yield 75%). IR (KBr) v / cm™ 3401, 3060, 2964, 2908, 2856, 1754, 1623, 1560, 1494, 1434, 1334,
1008, 966, 871, 808, 761, 696; *H NMR (400 MHz, CDCls3) ¢ 1.18 (t, 6H, J 8.0, 2CH3), 3.37 (g, 4H, J 8.0, 2CH), 6.38
(s, 1H, ArH), 6.48 (s, 1H, ArH), 6.57 (d, 1H, J 12.0, ArH), 6.84 (d, 2H, J 8.0, ArH), 7.25 (m, 4H, ArH), 7.37 (m, 2H,
ArH), 7.65 (m, 2H, ArH), 8.04 (d, 1H, J 8.0, CH=N), 8.37 (s, 1H, ArH), 13.66 (s, 1H, COOH); 3C NMR (100 MHz,
CDCls) 6 12.25, 44.14, 83.80, 97.82, 104.16, 104.93, 108.62, 111.80, 116.44, 121.09, 121.40, 124.03, 124.96, 126.93,
127.18, 128.82, 129.19, 129.36, 129.61, 133.09, 134.93, 147.97, 149.70, 152.62, 153.08, 155.23, 161.28, 162.85,
169.55; HRMS (ESI) m/z, calcd. for Cs1H27N204 [M]*: 491.1965, found: 491.1943.

NMR spectra of the compounds
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Figure S7. *H NMR spectrum (400 MHz, DMSO-dg) of compound 1.



991'1,
r4: 15l R
661°L
9z’ }

z9¢'s,
E.n.nw‘f\e
wmw.my
6L1'9
6569
1169
1089
1L0"2
0LZ'L]
62Z'L1
959'L1
V19l

689'L1

1/

80L'L| -

Zvo'g]
0908’

¢l5'6- -

€6L°LL- -

1.5

3.5

5.5

7.5

9.5

Figure S8. 'H NMR spectrum (400 MHz, CDClI3) of compound 2.
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Figure S9. 3C NMR spectrum (100 MHz, CDCls) of compound 2.
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Figure S10. 'H NMR spectrum (400 MHz, DMSO-dg) of sensor a.
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Figure S11. 3C NMR spectrum (100 MHz, DMSO-ds) of sensor a.
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Figure S12. 'H NMR spectrum (400 MHz, CDCl3) of compound b.
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Figure S13. 3C NMR spectrum (100 MHz, CDCls) of compound b.



Mass spectra of the compounds
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Figure S14. Mass spectrum of compound 2.
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Figure S15. Mass spectrum of sensor a.
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Figure S16. Mass spectrum of compound b.




IR of the compounds
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Figure S17. FTIR (KBr) spectrum of compound 2.
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Figure S18. FTIR (KBr) spectrum of sensor a.
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Figure S19. FTIR (KBr) spectrum of compound b.
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