## **Supplementary Information**

## Ruthenium(II)-mercapto Complexes with Anticancer Activity Interact with Topoisomerase IB

Monize M. da Silva,<sup>\*,a</sup> Mariana S. de Camargo,<sup>a</sup> Silvia Castelli,<sup>b</sup> Rone A. de Grandis,<sup>c</sup> Eduardo E. Castellano,<sup>d</sup> Victor M. Deflon,<sup>e</sup> Marcia R. Cominetti,<sup>f</sup> Alessandro Desideri<sup>b</sup> and Alzir A. Batista <sup>(5)</sup> \*<sup>,a</sup>

<sup>a</sup>Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos-SP, Brazil

<sup>b</sup>Dipartimento di Biologia, Università Tor Vergata di Roma, 00133 Rome, Italy

<sup>c</sup>Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (Unesp), 14801-902 Araraquara-SP, Brazil

<sup>d</sup>Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos-SP, Brazil

<sup>e</sup>Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos-SP, Brazil

<sup>f</sup>Departamento de Gerontologia, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos-SP, Brazil

\*e-mail: monize\_martins@yahoo.com.br; daab@ufscar.br



Figure S1. Absorption spectra of the complexes 1-4 in the UV-Vis region for the complexes, in CH<sub>2</sub>Cl<sub>2</sub>.



**Figure S2.** Cyclic voltammograms of the complexes 1-4, in  $CH_2Cl_2$  (0.1 M PTBA, 100 mV s<sup>-1</sup>, Ag/AgCl), platinum working electrode. Complex 1: [Ru(mtz)<sub>2</sub>(dppb)]; complex 2: [Ru(mmi)<sub>2</sub>(dppb)]; complex 3: [Ru(dmp)<sub>2</sub>(dppb)]; complex 4: [Ru(mpca)<sub>2</sub>(dppb)], mtz = 2-mercaptothiazoline; mmi = 2-mercapto-1-methyl-imidazole; dmp = 4,6-diamino-2-mercaptopyrimidine; mpca = 6-mercaptopyridine-3-carboxylic acid; dppb = 1,4-bis(diphenylphosphino)butane.



**Figure S3.** Cyclic voltammogram of the free 2-mercapto-1-methyl-imidazole, in CH<sub>2</sub>Cl<sub>2</sub> (0.1 M perchlorate tetrabuthyl ammonium (PTBA), 100 mV s<sup>-1</sup>, Ag/AgCl), platinum working electrode.





**Figure S4.** IR spectra of the **1-4** complexes, in CsI pellets. Complex **1**: [Ru(mtz)<sub>2</sub>(dppb)]; complex **2**: [Ru(mmi)<sub>2</sub>(dppb)]; complex **3**: [Ru(dmp)<sub>2</sub>(dppb)]; complex **4**: [Ru(mpca)<sub>2</sub>(dppb)].



Figure S5.  ${}^{31}P{}^{1}H$  (162 MHz, CH<sub>2</sub>Cl<sub>2</sub>/D<sub>2</sub>O) NMR spectra of the complexes 1-4.



**Figure S6.** <sup>1</sup>H NMR (400 MHz) spectra of the complexes in  $CD_2Cl_2$  (complexes 1 and 2) and in DMSO- $d_6$  (complexes 3 and 4).





**Figure S7.** Contour map of correlation spectroscopy (COSY) ( ${}^{1}H{-}{}^{1}H$ ) for complexes in CD<sub>2</sub>Cl<sub>2</sub> (complexes 1 and 2) and DMSO-*d*<sub>6</sub> (complexes 3 and 4).



Figure S8. <sup>13</sup>C NMR (100 MHz) spectra for complexes in  $CD_2Cl_2$  (complexes 1 and 2) and DMSO- $d_6$  (complexes 3 and 4).





**Figure S9.** Contour map of heteronuclear single quantum coherence spectroscopy (HSQC) ( $^{1}H^{-13}C$ ) for complexes in CD<sub>2</sub>Cl<sub>2</sub> (complexes **1** and **2**) and DMSO-*d*<sub>6</sub> (complexes **3** and **4**).







**Figure S10.** Stability of the complexes, for 72 h, in DMSO (0.1%)/DMEM solutions. <sup>31</sup>P NMR (162 MHz) (a) complex 1: [Ru(mtz)<sub>2</sub>(dppb)]; (b) complex 2: [Ru(mmi)<sub>2</sub>(dppb)]; (c) complex 3: [Ru(dmp)<sub>2</sub>(dppb)]; (d) complex 4: [Ru(mpca)<sub>2</sub>(dppb)].





Figure S11. Graphics of half maximal inhibitory concentration (IC<sub>50</sub>) for the complexes (2-4) with respect different cell lines. The complex 1 was not cytotoxic.

| Compound                                      | 1                         | 2                                 | 3                         | 4                            |
|-----------------------------------------------|---------------------------|-----------------------------------|---------------------------|------------------------------|
| Empirical formula                             | $C_{34}H_{36}N_2P_2RuS_4$ | $C_{36}H_{38}N_4P_2RuS_2$         | $C_{36}H_{38}N_8P_2RuS_2$ | $C_{40}H_{36}N_2O_4P_2RuS_2$ |
| Formula weight                                | 763.90                    | 753.83                            | 809.87                    | 835.84                       |
| Temperature / K                               | 293(2)                    | 293(2)                            | 296(2)                    | 296(2)                       |
| Wavelength / Å                                | 0.71073                   | 0.71073                           | 0.71073                   | 0.71073                      |
| Crystal system                                | monoclinic                | triclinic                         | monoclinic                | triclinic                    |
| Space group                                   | $P2_1/n$                  | P1                                | C2/c                      | P1                           |
| Unit cell dimensions / Å                      | a = 15.0555(2)            | a = 10.1920(7)                    | a = 20.053(2)             | a = 9.9027(13)               |
|                                               | <i>b</i> = 11.7774(2)     | b = 11.3782(10)                   | b = 32.567(4)             | <i>b</i> = 15.142(2)         |
|                                               | c = 20.6408(3)            | c = 16.6300(13)                   | c = 15.2562(15)           | c = 15.427(2)                |
| α / degree                                    | 90                        | 98.703(4)                         | 90                        | 86.416(3)                    |
| $\beta$ / degree                              | 108.4750(10)              | 104.127(5)                        | 120.872(6)                | 78.599(3)                    |
| γ / degree                                    | 90                        | 103.997(4)                        | 90                        | 75.717(3)                    |
| Volume / Å <sup>3</sup>                       | 3471.29(9)                | 1768.7(2)                         | 8551.8(18)                | 2197.1(5)                    |
| Z                                             | 4                         | 2                                 | 8                         | 2                            |
| Density (calculated) / (mg m <sup>-3</sup> )  | 1.462                     | 1.415                             | 1.258                     | 1.263                        |
| Absorption coefficient /                      | 0.811                     | 0.683                             | 0.572                     | 0.562                        |
| F(000)                                        | 1568                      | 776                               | 3328                      | 856                          |
| ~                                             | 0.322 	imes 0.222 	imes   | 0.018 0.160 0.001                 | 0.090 	imes 0.060 	imes   | $0.350 \times 0.110 \times$  |
| Crystal size / mm <sup>3</sup>                | 0.164                     | $0.218 \times 0.160 \times 0.024$ | 0.030                     | 0.030                        |
| Theta range for data collection / degree      | 2.71 to 26.00             | 2.644 to 25.671                   | 1.251 to 24.997           | 1.347 to 26.434              |
|                                               | $-17 \le h \le 18$        | $-11 \leq h \leq 12$              | $-23 \leq h \leq 23$      | $-12 \leq h \leq 12$         |
| Index ranges                                  | $-14 \leq k \leq 14$      | $-13 \le k \le 13$                | $-38 \le k \le 38$        | $-18 \leq k \leq 18$         |
|                                               | $-25 \le l \le 25$        | $-20 \le l \le 19$                | $-18 \le l \le 15$        | $-19 \le 1 \le 19$           |
| Reflections collected                         | 47703                     | 14516                             | 51358                     | 47497                        |
|                                               | 6819 [R(int) =            | 6198 [R(int) =                    | 7527 [R(int) =            | 8981 [R(int) =               |
| Independent reflections                       | 0.1258]                   | 0.0449]                           | 0.1548]                   | 0.0784]                      |
| Completeness to theta = $25.242^{\circ} / \%$ | 99.8                      | 94.3                              | 99.9                      | 100.0                        |
| Absorption correction                         | Gaussian                  | Gaussian                          | Multi-scan                | Multi-scan                   |
| Max. and min.<br>transmission                 | 0.8817 and 0.7836         | 0.9832 and 0.8919                 | 0.7452 and 0.5266         | 0.7454 and 0.6556            |
|                                               | Full-matrix least-        | Full-matrix least-                | Full-matrix least-        | Full-matrix least-           |
| Refinement method                             | squares on F <sup>2</sup> | squares on F <sup>2</sup>         | squares on F <sup>2</sup> | squares on F <sup>2</sup>    |

## Table S1. Crystal and refinement data for (1), (2), (3) and (4)

## Table S1. Crystal and refinement data for (1), (2), (3) and (4) (cont.)

| Compound                    | 1                  | 2                  | 3                  | 4                  |
|-----------------------------|--------------------|--------------------|--------------------|--------------------|
| Data / restraints /         | 6819 / 0 / 388     | 6198 / 0 / 408     | 7527 / 0 / 436     | 8981 / 0 / 462     |
| parameters                  | 00177 07 500       |                    |                    |                    |
| Goodness-of-fit on $F^2$    | 1.032              | 1.102              | 0.999              | 1.038              |
| Final R indices [I >        | R1 = 0.0448, wR2 = | R1 = 0.0605, wR2 = | R1 = 0.0589, wR2 = | R1 = 0.0459, wR2 = |
| 2sigma(I)]                  | 0.1153             | 0.1458             | 0.1403             | 0.0935             |
| R indices (all data)        | R1 = 0.0586, wR2 = | R1 = 0.0824, wR2 = | R1 = 0.1155, wR2 = | R1 = 0.0874, wR2 = |
|                             | 0.1273             | 0.1611             | 0.1771             | 0.1086             |
| Largest diff. peak and      | 1.010 1.1.001      | 0.956 and -0.812   | 0.895 and -0.803   | 0.551 and -0.835   |
| hole / (e Å <sup>-3</sup> ) | 1.010  and  -1.021 |                    |                    |                    |

F(000): structure factor in the zeroth-order case; R(int): internal R-value; F<sup>2</sup>: squared structure factor.

| Table S2. Data | of the | electronic spectra | of the complexes | (CH <sub>2</sub> Cl <sub>2</sub> solutions) |
|----------------|--------|--------------------|------------------|---------------------------------------------|
|                |        |                    |                  |                                             |

| Complex | $\lambda / nm$ | log ε | Transition                   |
|---------|----------------|-------|------------------------------|
|         | 234            | 4.89  | IL $(\pi \rightarrow \pi^*)$ |
| 1       | 304            | 4.04  | MLCT                         |
|         | 236            | 4.88  | IL $(\pi \rightarrow \pi^*)$ |
| 2       | 276            | 4.36  | IL $(\pi \rightarrow \pi^*)$ |
|         | 338            | 3.66  | MLCT                         |
|         | 236            | 4.91  | IL $(\pi \rightarrow \pi^*)$ |
| 3       | 266            | 4.47  | IL $(\pi \rightarrow \pi^*)$ |
|         | 334            | 4.05  | MLCT                         |
|         | 232            | 4.64  | IL $(\pi \rightarrow \pi^*)$ |
| 4       | 298            | 4.32  | IL $(\pi \rightarrow \pi^*)$ |
|         | 356            | 3.90  | MLCT                         |
|         | 422            | 3.90  | MLCT                         |

IL: intra ligand charge transfer; MLCT: metal ligand charge transfer.

Table S3. Assignments of the vibrational frequencies of the complexes

| Vibrational frequency / cm <sup>-1</sup> |                               |                               |                               |                                |  |
|------------------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|--|
|                                          | [Ru(mtz) <sub>2</sub> (dppb)] | [Ru(mmi) <sub>2</sub> (dppb)] | [Ru(dmp) <sub>2</sub> (dppb)] | [Ru(mpca) <sub>2</sub> (dppb)] |  |
| vNH <sub>2</sub>                         |                               |                               | 3437/3394                     |                                |  |
| <i>v</i> C–H                             | 3137/3051                     | 3114/3051                     | 3127/3058                     | 3152/3046                      |  |
| vCH <sub>2</sub>                         | 2912/2853                     | 2909/2851                     | 2917/2852                     | 2919/2849                      |  |
| vasCOOH                                  |                               |                               |                               | 1683                           |  |
| vC=O                                     |                               |                               |                               |                                |  |
| vC=N                                     | 1588                          | 1590                          | 1619                          | 1580                           |  |
| vC=C+C=N                                 | 1531                          | 1527                          | 1547                          | 1538                           |  |
| vsCOOH                                   |                               |                               |                               | 1364                           |  |
| vC-S                                     | 1294                          | 1282                          | 1312                          | 1264                           |  |
| vC-S                                     | 1183                          | 1143                          | 1159                          | 1153                           |  |
| vP-Canel                                 | 1088                          | 1092                          | 1091                          | 1094                           |  |
| vP–C <sub>alif</sub>                     | 740                           | 741                           | 742                           | 738                            |  |
| vP-C                                     | 512                           | 515                           | 516                           | 510                            |  |
| vRu–S                                    | 440                           | 438                           | 460                           | 442                            |  |
| vRu–N                                    | 423                           | 421                           | 430                           | 420                            |  |

mtz: 2-mercaptothiazoline; mmi: 2-mercapto-1-methyl-imidazole; dmp: 4,6-diamino-2-mercaptopyrimidine; mpca: 6-mercaptopyridine-3-carboxylic acid; dppb: 1,4-bis(diphenylphosphino)butane.

