Supplementary Information

Streamlined Synthesis of 6-((1*H*-1,2,3-Triazol-4-yl)methyl)-1*H*-pyrrolo [3,4-*d*]pyridazin-1-one System via Sequential N-Alkylation, CuAAC, and [4 + 2] Cyclization Reactions

Helio G. Bonacorso, ⁽⁵⁾ *^{,a} Hernane T. Magalhães,^a Gean M. Dal Forno,^a Francieli M. Libero,^a Manfredo Hoerner,^a Clarissa P. Frizzo,^a Marcos A. P. Martins^a and Nilo Zanatta^a

^aNúcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil

*e-mail: helio.bonacorso@ufsm.br

X-ray diffraction of single crystals

The crystallographic parameters for **3a** and **8a** and details of data collection and refinement are listed on Tables S1 and S4. Selected bond and angles are listed on Tables S2 and S5. Interplanar angles between molecular fragments are listed in Tables S3 and S6, respectively.

Empirical formula		C ₁₈ H ₁₅ NO ₃
Formula weight		293.31
T / K		293(2)
Radiation, $\lambda / \text{\AA}$		1.54178
Crystal system, space group		monoclinic, Cc
Unit cell dimensions, <i>a</i> , <i>b</i> , <i>c</i> / Å		a = 10.3244(3)
		<i>b</i> = 19.9176(6)
		c = 8.2093(2)
α, β, γ / degree		$\beta = 111.0900(10)$
Volume / Å ³		1575.06(8)
Z, Calculated density / (g cm ⁻³)		4, 1.237
Absorption coefficient / mm ⁻¹		0.689
F(000)		616
Crystal size / mm		$0.422\times0.247\times0.196$
Theta range / degree		6.351 - 68.237
Index ranges		$-11 \le h \le 12, -16 \le k \le 23, -9 \le l \le$
Reflections collected		6152
Independent reflections		2375 [$R_{\rm int} = 0.0119$]
Completeness to theta max.		95.1%
Max. and min. transmission		0.7531 and 0.7130
Refinement method		Full-matrix least-squares on F^2
Data / restraints / parameters		2375 / 2 / 203
Goodness-of-fit on F^2		1.087
Final R indices $[I > 2\sigma(I)]$		$R_1 = 0.0312, wR_2 = 0.0882$
R indices (all data)		$R_1 = 0.0313, wR_2 = 0.0882$
BASF	0.19207	
Extinction coeficient	0.033(5)	
Largest diff. peak and hole / (e $Å^{-3}$)		0.234 and -0.099

9

Table S1. Crystal data and structure refinement parameters for 1-(prop-2-yn-1-yl)-1*H*-pyrrole (3a)

Highest peak 0.234 (e Å⁻³) at 0.8981 0.4918 0.2559 [0.98 Å from C(11)].

Deepest hole -0.099 (e Å⁻³) at 0.5558 0.1040 0.0358 [0.74 Å from H(26)].

Table S2. Selected bond lengths and angles for 1-(prop-2-yn-1-yl)-1*H*-pyrrole (3a)

Bond distance / Å		Bond angle / degree		
C(2)-N(1)	1.396(2)	C(3)-C(2)-N(1)	106.62(17)	
C(5)-N(1)	1.365(3)	C(2)-C(3)-C(4)	108.44(18)	
C(2)-C(3)	1.370(3)	C(5)-C(4)-C(3)	106.95(19)	
C(4)-C(5)	1.385(3)	N(1)-C(5)-C(4)	107.76(17)	
C(3)-C(4)	1.427(3)	C(5)-N(1)-C(2)	110.22(17)	
N(1)-C(11)	1.468(3)	O(311)-C(31)-O(32)	124.6(2)	
C(11)-C(12)	1.466(3)	O(311)-C(31)-C(3)	124.8(2)	
C(12)-C(13)	1.171(4)	O(32)-C(31)-C(3)	110.51(19)	
C(3)-C(31)	1.483(3)	C(31)-O(32)-C(33)	115.8(3)	
C(31)-O(311)	1.196(3)	O(411)-C(41)-C(4)	118.9(2)	
C(31)-O(32)	1.330(3)	O(411)-C(41)-C(42)	119.6(3)	
C(33)-O(32)	1.449(4)	C(4)-C(41)-C(42)	121.4(2)	
C(4)-C(41)	1.471(3)	C(13)-C(12)-C(11)	178.4(3)	
C(41)-O(411)	1.220(3)	N(1)-C(5)-C(51)	120.3(2)	
C(41)-C42)	1.494(4)	C(4)-C(5)-C(51)	131.9(2)	
		C(2)-N(1)-C(11)	124.38(17)	

 Table S3. Interplanar angles between molecular fragments of 1-(prop-2-yn-1-yl)-1H-pyrrole (3a)

Fragment	Interplanar angle with the central pyrrole ring / degree
Ethynyl	
H(13)C(13)C(12)C(11)-N(1)	80.0(2)
Phenyl	
C(26)-C(21)	44.61(7)
Methoxycarbonyl	
C(33)O(32)C(31)O(311)	76.7(10)
Acetyl	
C(42)C(41)(O411)	10.0(3)

 Table S4. Crystal data and structure refinement parameters for 1-((1H-1,2,3-triazol-4-yl)methyl)-1H-pyrrole (8a)

Empirical formula	$C_{25}H_{24}N_4O_3$
Formula weight	428.48
T / K	100(2)
Radiation, $\lambda / Å$	0.56086
Crystal system, space group	triclinic, <i>P</i> (-1)
Unit cell dimensions, a, b, c / Å	a = 9.5258(4)
	b = 10.2250(4)
	c = 12.4371(5)
$\alpha, \beta, \gamma/$ degree	$\alpha = 107.5450(10)$
	$\beta = 91.3260(10)$
	$\gamma = 111.8490(10)$
Volume / Å ³	1059.46(7)
Z, Calculated density / (g cm ⁻³)	2, 1.343
Absorption coefficient / mm ⁻¹	0.057
<i>F</i> (000)	452
Crystal size / mm	$0.388 \times 0.227 \times 0.185$
Theta range / degree	1.861 - 27.405
Index ranges	$-15 \le h \le 15, -16 \le k \le 16, -20 \le l \le 20$
Reflections collected	93896
Independent reflections	9793 [$R_{\rm int} = 0.0991$]
Completeness to theta max.	99.8%
Max. and min. transmission	0.7145 and 0.7455
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	9793 / 0 / 289
Goodness-of-fit on \overline{F}^2	1.102
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0618, wR_2 = 0.1400$
R indices (all data)	$R_1 = 0.1290, wR_2 = 0.1680$
Extinction coefficient	n/a
Largest diff. peak and hole / (e $Å^{-3}$)	0.537 and -0.436

Highest peak 0.537 (e Å⁻³) at 0.9386 0.3780 0.3553 [0.54 Å from H(41C)]. Deepest hole -0.436 (e Å⁻³) at 0.9298 0.6827 0.3322 [1.10 Å from C(5)].

Bond distance / Å		Bond angle / degree	
C(2)-N(1)	1.3811(17)	C(12)-C(16)	1.3738(18)
C(2)-C(3)	1.3854(17)	C(16)-N(15)	1.3530(17)
C(2)-C(21)	1.4808(18)	C(31)-O(311)	1.2178(15)
C(3)-C(4)	1.4381(18)	C(31)-O(32)	1.3379(15)
C(3)-C(31)	1.4661(18)	C(33)-O(32)	1.4504(17)
C(4)-C(5)	1.3832(18)	C(41)-O(412)	1.2234(17)
C(4)-C(41)	1.4775(18)	C(41)-C(411)	1.5118(19)
C(5)-N(1)	1.3782(17)	C(151)-N(15)	1.4740(17)
C(5)-C(51)	1.4883(19)	C(151)-C(152)	1.5100(19)
C(11)-N(1)	1.4575(17)	N(13)-N(14)	1.3209(17)
C(11)-C(12)	1.5007(18)	N(14)-N(15)	1.3444(17)
C(12)-N(13)	1.3603(17)		
N(1)-C(5)-C(51)	121.09(12)	C(4)-C(41)-C(411)	119.45(11)
C(4)-C(5)-C(51)	131.30(12)	N(15)-C(151)-C(152)	113.16(11)
N(1)-C(11)-C(12)	113.63(11)	C(5)-N(1)-C(2)	110.34(11)
N(13)-C(12)-C(16)	108.61(12)	C(5)-N(1)-C(11)	123.59(11)
N(13)-C(12)-C(11)	119.86(12)	C(2)-N(1)-C(11)	125.98(11)
C(16)-C(12)-C(11)	131.21(12)	N(14)-N(13)-C(12)	108.90(12)
N(15)-C(16)-C(12)	104.26(11)	N(13)-N(14)-N(15)	106.91(11)
O(311)-C(31)-O(32)	123.52(12)	N(14)-N(15)-C(16)	111.31(11)
O(311)-C(31)-C(3)	123.41(12)	N(14)-N(15)-C(151)	119.48(11)
O(32)-C(31)-C(3)	113.07(11)	C(16)-N(15)-C(151)	128.89(12)
O(412)-C(41)-C(4)	121.07(12)	C(31)-O(32)-C(33)	115.95(11)
O(412)-C(41)-C(411)	119.35(12)		

Fragment	Interplanar angle with the central pyrrole ring /		
Hagment	degree		
Triazole	82.26(5)		
C(12)N(13)N(14)N(15)C(16)			
Phenyl	60.43(6)		
C(26)-C(21)			
Methoxycarbonyl	25.58(7)		
C(33)O(32)C(31)O(311)			
Acetyl	37.8(12)		
C(411)C(41)(O412)			
Phenyl	33.36(6)		
C(152)-C(157)			
	Interplanar angle with the triazole ring		
	-C(12)N(13)N(14)N(15)C(16)		
Phenyl			
C(152)-C(157)	74.85(5)		

 Table S6. Interplanar angles between molecular fragments of 1-((1H-1,2,3-triazol-4-yl)methyl)-1H-pyrrole (8a)

Figure S1.¹H NMR spectrum (400 MHz, CDCl₃) of 1a.

Figure S2. ¹³C NMR spectrum (100 MHz, CDCl₃) of 1a.

Figure S3. ¹H NMR spectrum (400 MHz, CDCl₃) of 1b.

Figure S4. ¹³C NMR spectrum (100 MHz, CDCl₃) of 1b.

Figure S5.¹H NMR spectrum (400 MHz, DMSO- d_6) of **2a**.

Figure S6. ¹³C MNR spectrum (100 MHz, DMSO- d_6) of **2a**.

Figure S7. ¹H NMR spectrum (400 MHz, $CDCl_3$) of **2b**.

Figure S8. ¹³C NMR spectrum (100 MHz, CDCl₃) of 2b.

Figure S9. ¹H NMR spectrum (400 MHz, CDCl₃) of 3a.

Figure S10. ¹³C NMR spectrum (100 MHz, CDCl₃) of **3a**.

Figure S11. ¹H NMR spectrum (400 MHz, CDCl₃) of **3b**.

Figure S12. ¹³C NMR spectrum (100 MHz, CDCl₃) of **3b**.

Figure S13. ¹H NMR spectrum (400 MHz, CDCl₃) of **8a**.

Figure S14. ¹³C NMR spectrum (100 MHz, CDCl₃) of 8a.

Figure S15. ¹H NMR spectrum (400 MHz, CDCl₃) of **9a**.

Figure S16. ¹³C NMR spectrum (100 MHz, CDCl₃) of 9a.

Figure S17. ¹H NMR spectrum (400 MHz, CDCl₃) of 10a.

Figure S18. ¹³C NMR spectrum (100 MHz, CDCl₃) of 10a.

Figure S19. ¹H NMR spectrum (400 MHz, CDCl₃) of 11a.

Figure S20. ¹³C NMR spectrum (100 MHz, CDCl₃) of 11a.

Figure S21. ¹H NMR spectrum (400 MHz, CDCl₃) of 8b.

Figure S22. ¹³C NMR spectrum (100 MHz, CDCl₃) of 8b.

Figure S23. ¹H NMR spectrum (400 MHz, CDCl₃) of 9b.

Figure S24. 13 C NMR spectrum (100 MHz, CDCl₃) of **9b**.

Figure S25. ¹H NMR spectrum (400 MHz, CDCl₃) of 10b.

Figure S26. ¹³C NMR spectrum (100 MHz, CDCl₃) of **10b**.

Figure S27. ¹H NMR spectrum (400 MHz, CDCl₃) of 11b.

Figure S28. ¹³C NMR spectrum (100 MHz, CDCl₃) of 11b.

Figure S29. ¹H NMR spectrum (400 MHz, CDCl₃) of 12a.

Figure S30. ¹³C NMR spectrum (100 MHz, CDCl₃) of 12a.

Figure S31. ¹H NMR spectrum (400 MHz, CDCl₃) of 13a.

Figure S32. ¹³C NMR spectrum (100 MHz, CDCl₃) of 13a.

Figure S34. ¹³C NMR spectrum (100 MHz, CDCl₃) of 14a.

Figure S35. ¹H NMR spectrum (400 MHz, CDCl₃) of 15a.

Figure S37. ¹H NMR spectrum (400 MHz, CDCl₃) of **12b**.

Figure S38. ¹³C NMR spectrum (100 MHz, CDCl₃) of **12b**.

Figure S39. ¹H NMR spectrum (400 MHz, CDCl₃) of 13b.

Figure S40. ¹³C NMR spectrum (100 MHz, CDCl₃) of 13b.

Figure S41. ¹H NMR spectrum (400 MHz, CDCl₃) of 14b.

Figure S42. ¹³C NMR spectrum (100 MHz, CDCl₃) of 14b.

Figure S43. ¹H NMR spectrum (400 MHz, CDCl₃) of 15b.

Figure S44. ¹³C NMR spectrum (100 MHz, CDCl₃) of 15b.

CheckCIF 3a

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) shelx

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: shelx

Bond precision:	C-C = 0.0033 A	Wavelength=1.54178		
Cell:	a=10.3244(3)	b=19.9176	(6)	c=8.2093(2)
Temperature:	alpha=90 293 K	beta=111.	090(1)	gamma=90
	Calculated		Reported	
Volume	1575.06(8)		1575.06(8)	
Space group	Сс		Сс	
Hall group	C -2yc		C -2yc	
Moiety formula	C18 H15 N O3		?	
Sum formula	C18 H15 N O3		C18 H15 N O	3
Mr	293.31		293.31	
Dx,g cm-3	1.237		1.237	
Z	4		4	
Mu (mm-1)	0.689		0.689	
F000	616.0		616.0	
F000'	617.93			
h,k,lmax	12,23,9		12,23,9	
Nref	2889[1450]		2375	
Tmin,Tmax				
Tmin'				
Correction metho	od= Not given			
Data completenes	ss= 1.64/0.82	Theta (ma	x)= 68.237	
R(reflections) =	0.0312(2369)	wR2(refl	ections)= 0	.0882(2375)
S = 1.088	Npar=	203		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C

PLAT052_ALERT_1_C_1	Info on Absorption Correction Method Not Given	Please	Do !
PLAT053_ALERT_1_C M	Minimum Crystal Dimension Missing (or Error)	Please	Check
PLAT054_ALERT_1_C_M	Medium Crystal Dimension Missing (or Error)	Please	Check
PLAT055_ALERT_1_C M	Maximum Crystal Dimension Missing (or Error)	Please	Check
PLAT089_ALERT_3_C H	Poor Data / Parameter Ratio (Zmax < 18)	6.79	Note
PLAT911_ALERT_3_C M	Missing FCF Refl Between Thmin & STh/L= 0.600	68	Report
PLAT913_ALERT_3_C M	Missing # of Very Strong Reflections in FCF	25	Note
PLAT915_ALERT_3_C N	No Flack x Check Done: Low Friedel Pair Coverage	69	8
PLAT978_ALERT_2_C N	Number C-C Bonds with Positive Residual Density.	0	Info

Alert level G		
PLAT019_ALERT_1_G_diffrn_measured_fraction_theta_full/*_max < 1.0	0.663	Report
PLAT032 ALERT 4 G Std. Uncertainty on Flack Parameter Value High .	0.300	Report
PLAT199 ALERT 1 G Reported cell measurement temperature (K)	293	Check
PLAT200 ALERT 1 G Reported diffrn ambient temperature (K)	293	Check
PLAT343 ALERT 2 G Unusual sp? Angle Range in Main Residue for	C11	Check
PLAT779 ALERT 4 G Suspect or Irrelevant (Bond) Angle in CIF #	33	Check
O411 -C25 -H25 1.655 1.555 1.555	40.60 Deg.	
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	2	Note
PLAT912 ALERT 4 G Missing # of FCF Reflections Above STh/L= 0.600	2	Note
PLAT933 ALERT 2 G Number of OMIT Records in Embedded .res File	5	Note
0 ALERT level A = Most likely a serious problem - resolve or expl	ain	
0 ALERT level B = A potentially serious problem, consider careful	lv	

9 ALERT level B = A potentially serious problem, consider carefully 9 ALERT level C = Check. Ensure it is not caused by an omission or oversight 9 ALERT type I CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 2 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/10/2018; check.def file version of 15/10/2018

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) shelx

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: shelx

Bond precision: C-C = 0.0020 A Wavelength=0.56086			
Cell: a	=9.5258(4)	b=10.2250(4)	c=12.4371(5)
a Temperature: 2	lpha=107.545(1) 73 K	beta=91.326(1) gamma=111.849(1)
	Calculated	Rep	orted
Volume	1059.46(8)	105	9.46(7)
Space group	P -1	P -	-1
Hall group	-P 1	- P	1
Moiety formula	C25 H24 N4 O3	?	
Sum formula	C25 H24 N4 O3	C25	5 H24 N4 O3
Mr	428.48	428	1.48
Dx,g cm-3	1.343	1.3	43
Z	2	2	
Mu (mm-1)	0.057	0.0	157
F000	452.0	452	2.0
F000'	452.04		
h,k,lmax	15,16,20	15,	16,20
Nref	9816	977	15
Tmin,Tmax	0.985,0.990		
Tmin'	0.978		
Correction meth	od= Not given		
Data completene	ss= 0.996	Theta(max)=	= 27.405
R(reflections) =	0.0608(6010)	wR2(reflect	cions)= 0.1488(9775)
S = 1.043	Npar=	289	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

PLAT052 ALERT 1 C Info on	Absorption Correction Method Not Given	Please	Do !
PLAT906 ALERT 3 C Large K	Value in the Analysis of Variance	5.376	Check
PLAT910 ALERT 3 C Missing	# of FCF Reflection(s) Below Theta(Min).	6	Note
PLAT911_ALERT_3_C Missing	FCF Refl Between Thmin & STh/L= 0.600	18	Report

the second se	,		
PLAT154_ALERT_1_G	The s.u.'s on the Cell Angles are Equal(Note)	0.001	Degree
PLAT199_ALERT_1_G H	Reported _cell_measurement_temperature (K)	273	Check
PLAT200_ALERT_1_G H	Reporteddiffrn_ambient_temperature (K)	273	Check
PLAT380_ALERT_4_G 1	<pre>Incorrectly? Oriented X(sp2)-Methyl Moiety</pre>	C51	Check
PLAT380 ALERT 4 G 1	Incorrectly? Oriented X(sp2)-Methyl Moiety	C411	Check
PLAT773 ALERT 2 G C	Check long C-C Bond in CIF: C2C155	3.41	Ang.
PLAT773_ALERT_2_G (Check long C-C Bond in CIF: C3C155	3.47	Ang.
PLAT773_ALERT_2_G C	Check long C-C Bond in CIF: C22C156	3.49	Ang.
PLAT912_ALERT_4_G M	Missing # of FCF Reflections Above STh/L= 0.600	17	Note
PLAT933_ALERT_2_G N	Number of OMIT Records in Embedded .res File	24	Note
PLAT978_ALERT_2_G N	Number C-C Bonds with Positive Residual Density.	17	Info

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
4 ALERT level C = Check. Ensure it is not caused by an omission or oversight
11 ALERT level G = General information/check it is not something unexpected
4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
5 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
3 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/10/2018; check.def file version of 15/10/2018

