Supplementary Information

Synthesis, Characterization and Preliminary Study on Acetylpyrazine N(4)Butylthiosemicarbazone as a Potential CDK2 Inhibitor Combined with DFT Calculations

Erna Normaya,^{**} Mohammad N. Ahmad,^a Yang Farina^b and Ku H. K. Bulat^c

^aExperimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

^bSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

^cDepartment of Chemistry, Faculty of Science, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Terengganu, Terengganu Darul Iman, Malaysia

Figure S1. Numbering used for assignment of ¹H and ¹³C NMR chemical shift signals for APBT.

^{*}e-mail: ernanormaya@gmail.com

Figure S2. Bond length correlation coefficient of APBT.

Figure S3. Optimized geometries of the reactants and product involved in the chemical reaction calculated at the B3LYP/6-311++G(d,p).

		Calculated		
Geometric parameter	Experimental	B3LYP/6-311++G(d,p)		
Bond length / Å		-		
S19–C18	1.680	1.681		
N6-C5	1.329	1.331		
N1-C6	1.347	1.342		
N3-C2	1.342	1.336		
N3-C4	1.337	1.344		
N15–N16	1.366	1.349		
N15-C10	1.284	1.296		
N16-C18	1.373	1.386		
N20-C18	1.337	1.343		
N20-C22	1.409	1.458		
C4–C5	1.406	1.411		
C1–C2	1.383	1.393		
C4–C10	1.485	1.481		
C10-C11	1.500	1.506		
Bond angle / degree				
C5-N6-C1	116.5	116.5		
C2-N3-C4	116.5	117.1		
N16-N15-C10	120.4	118.6		
N15-N16-C18	117.9	121.9		
C18-N20-C22	133.3	125.1		
N15-C10-C4	122.1	122.6		
N6-C1-C2	121.4	121.6		
N3-C2-C1	122.4	122.0		
N3-C4-C10	121.1	120.2		
C10-C4-C5	121.8	122.4		
N15-C10-C4	114.0	116.5		
N15-C10-C11	126.6	123.9		
C4C10C11	119.4	119.6		
S19-C18-N16	119.1	118.3		
S19-C18-N20	127.4	127.0		
N16-C18-N20	113.4	114.7		

Table S1. The experimental and calculated geometric parameters of APBT

Moda No	Experimental frequency /	Calculated frequency / cm ⁻¹		Intonsity	Vibrational assignment ($PED > 10 / \%$)
1000C 110.	cm^{-1}	Unscaled	Scaled	Intensity	Violational assignment ($\Gamma ED \ge 107.76$)
1	3363	3587	3453	53.59	v[(N20H21)] (99)
2	3219	3571	3438	35.78	v[(N16H17)] (99)
3	3096	3210	3090	4.30	v[(C5H9)] (96)
4	3080	3192	3073	48.20	v[(C1H7)] (93)
5	_	3182	3063	1.94	v[(C11H13)] (93)
6	_	3172	3054	10.96	v[(C1H7)] (95)
7	3004	3139	3022	4.76	v[(C22H24)] (86)
8	2995	3117	3001	45.24	v[(C31H33)] (84)
9	_	3115	2999	45.35	v[(C31H32)] (93)
10	_	3084	2969	25.46	v[(C25H26)] (80)
11	_	3083	2968	11.05	v[(C11H12)] (97)
12	_	3064	2950	25.24	v[(C28H29)] (78)
13	2929	3049	2935	40.63	v[(C22H23)] (85)
14	_	3046	2932	15.59	v[(C31H32)] (94)
15	_	3033	2920	24.87	v[(C25H27)] (85)
16	_	3031	2918	6.97	v[(C11H12)] (93)
17	2867	3024	2911	25.51	v[(C28H29)] (13)
18	1630	1660	1598	63.95	v[(N15C11)] (63)
19	1599	1612	1552	29.64	$\nu[(N15C10)](52) + \delta[(H8C2N3)](21)$
20	_	1588	1529	278.74	$v[(N20C18)](53) + \delta[(H21N20C22)](30)$
21	1504	1582	1523	139.60	v[(N6C5)] (69)
22	1470	1541	1484	264.09	δ[(H17N16N1)5] (53)
23	1464	1522	1465	3.67	$\delta[(H32C31H33)](68) + \tau[(H29C28C31H33)](10)$
24	_	1518	1461	6.14	$\delta[(H26C25H27)](70) + \tau[(H29C28N25C22)](12)$
25	_	1514	1458	8.68	$\delta[(H13C11H14)](81) + \tau[(C11H12C10H13)](13)$
26	_	1508	1452	60.63	δ[(H26C25H27)] (57)

Table S2. Observed and calculated vibrational frequencies of APBT with B3LYP/6-311++ G(d,p)

27	—	1506	1450	55.80	δ[(H26C25H27)] (56)
28	_	1503	1447	0.97	γ[(H26C25H28)] (65)
29	_	1495	1439	48.60	$\delta[(H23C22H24)](63) + \tau[(C11H12C10H14)](14)$
30	1421	1482	1427	104.67	$\delta[(H13C11C10)](41) + \tau[(C11H12C10H14)](23)$
31	1403	1446	1392	52.93	δ[(H7C1N6)] (38)
32	_	1436	1382	3.78	γ[(H32C31H33)] (84)
33	_	1428	1375	24.58	τ[(H24C22N20C18)] (53)
34	_	1409	1356	7.95	γ[(H12C11H14)] (78)
35	_	1393	1341	43.04	δ[(H21N20C22)] (21)
36	1318	1387	1335	36.12	τ[(H29C28C31H33)] (46)
37	1297	1355	1304	2.83	$\delta[(H26C25C28)](42) + \tau[(H34C31C28C25)](10)$
38	1255	1349	1299	25.77	$\gamma[(H23C22N20)](53) + \delta[(H23C22N20)](12)$
39	_	1329	1279	94.59	$v[(C4C10)](17) + \delta[(H21N20N22)](12)$
40	_	1323	1274	11.05	$v[(C4C5)](28) + \delta[(H8C2N3)](51)$
41	_	1300	1252	17.36	$\gamma[(H26C25C28)](24) + \tau[(H23C22N20C18)](43)$
42	1224	1276	1228	113.42	δ[(H23C22C20)] (39)
43	_	1263	1216	72.73	v[(N3C2)] (70)
44	1176	1217	1172	359.38	$v[(N16C18)](41) + \tau[(H29C28C25C22)](10)$
45	_	1207	1162	13.16	$\nu[(C1C6)](18) + \delta[(H9C5N6)](13)$
46	1113	1180	1136	33.01	$v[(N15N160)](17) + \tau[(H29C28C25C22)](26)$
47	1104	1171	1127	60.45	v[(N15N16)] (38)
48	_	1137	1095	16.91	$[(C22C25)] (30) + \delta[(C25C22N20)] (12) + \tau[(H34C31C28C25)] (31)$
49	_	1124	1082	14.80	$\delta[(H13N11N10)] (10) + \delta[(C2C1N6)] (14) + \tau[(C11H12C10H14)] (11)$
50	1064	1096	1055	55.20	$\nu[(C22C25)](30) + \nu[(S19C18)](30) + \tau[(H33C31C28C25)](10)$
51	_	1076	1036	10.99	v[(C1C2)] (62)
52	_	1073	1033	16.58	v[(C28C31)] (73)
53	1008	1055	1016	0.26	$\gamma[(H13C11H14)](14) + \tau[(C11H12C10H13)](72)$
54	_	1030	992	33.21	$\delta[(C10N15N16)](21) + \delta[(C2N3C4)](19) + \delta[(C1C2N3)](41)$
55	960	992	955	3.40	$v[(C10C11)](38) + \gamma[(H23C22H24)](10)$

56	_	984	947	0.09	$v[(C22C25)](30) + \tau[(H7C1C2H8)](86)$
57	_	983	946	3.21	τ[(H34C31C28C25)] (15)
58	928	963	927	0.33	τ[(H8C2C1N6)] (86)
59	_	956	920	5.13	τ[(H33C31C28C25)] (48)
60	848	888	855	2.81	$\nu[(C28C25)](61) + \tau[(H22C25C20C23)](10)$
61	_	868	836	13.51	$\tau[(H7C1N6C5)]$ (91)
62	800	856	824	29.52	$v[(S19C18)](25) + \delta[(C1C2N3)](14)$
63	761	798	768	7.33	τ[(H29C28C31H33)] (37)
64	_	788	759	1.30	τ[(H32C31C28C25)] (20)
65	_	777	748	1.43	τ[(C2N3C4C5)] (77)
66	704	756	728	8.20	τ[(C22C25N20H23)] (58)
67	641	672	647	7.31	$\nu[(S19C18)](11) + \delta[(C11C10N15)](46)$
68	_	644	620	8.39	$\tau[(C18N16N20S19)]$ (80)
69	_	626	603	0.52	δ[(C1N6C5)] (80)
70	585	599	577	12.59	$\delta[(C18N20C22)](23) + \tau[(C2C1N6C5)](25)$
71	_	596	574	27.96	$\gamma[(N20C18S19)] (12) + \tau[(C11C4N15C10)] (41)$
72	537	565	544	41.93	τ[(H21N20C18S19)] (80)
73	529	542	522	2.57	δ[(C18N16N15)] (45)
74	497	521	502	47.10	τ[(H17N16C18S19)] (76)
75	481	480	462	36.55	τ[(N3C2C1N6)] (83)
76	_	468	451	9.68	γ[(C22C25C28)] (45)
77	417	423	407	12.83	$\tau[(C2C1N6C5)]$ (84)
78	_	418	402	10.69	δ[(C5C4C10)] (56)
79	_	361	348	1.38	δ[(C25C28C31)] (57)
80	_	313	301	0.80	δ[(C11C10N15)] (62)
81	_	310	298	4.31	$\gamma[(C22C25C28)](41) + \tau[(H33C31C28C25)](12)$
82	_	292	281	0.10	τ[(C4C10N15N16)] (53)
83	_	279	269	2.87	$\delta[(N20C18S19)] (28) + \tau[(H33C31C28C25)] (31)$
84	_	232	223	0.50	$\gamma[(C18N20C22)](45) + \tau[(H29C28C25C22)](14)$

85	-	211	203	4.09	$\delta[(C2C1N6)] (10) + \gamma[(C18C20C22)] (18) + \tau[(H29C28C25C22)] (24)$
86	-	177	170	9.55	δ[(C5C4C10)] (64)
87	_	169	163	1.12	τ[(H12C11C10C4)] (79)
88	_	139	134	1.78	$\tau[(H12C11C10C4)](13) + \tau[(C10C4C5N6)](67)$
89	_	116	112	0.30	$\tau[(C28C25C22N20)]$ (57)
90	_	108	104	0.45	$\tau[(C10N15N16C18)](56) + \tau[(N4N10C15N16)](10)$
91	_	72	69	1.33	γ[(C10N15N16)] (59)
92	_	59	57	0.45	$\tau[(C18N20C22C25)]$ (63)
93	_	48	46	1.89	$\tau[(N3C4C10N15)](16) + \tau[(C4C10N15N16)](66)$
94	_	42	40	0.26	$\tau[(C31C28C25C22)](10) + \tau[(C28C25C22N20)](57)$
95	_	27	26	0.12	τ[(C22N20C18N16)] (65)
96	-	18	17	0.65	τ[(N3C4C10N15)] (84)

PED: potential energy distribution; v: stretching; δ : in-plane bending; γ : out-of-plane bending; τ : torsion.² Scaling factor = 0.9627.

Figure S4. ¹H NMR (400 MHz, DMSO- d_6) spectrum of APBT.

Figure S5. ¹³C NMR (400 MHz, DMSO- d_6) spectrum of APBT.

References

- 1. Normaya, E.; Farina, Y.; Halim, S. N. A.; Tienkink, E. R. T.; Acta Crystallogr. 2011, E67, o943.
- 2. Sert, Y.; Miroslaw, B.; Cirak, C.; Dogan, H.; Szulczyk, D.; Struga, M.; Spectrochim. Acta, Part A 2014, 128, 91.

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence.

(cc) BY