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The quality control of pellets homogeneity cannot be assessed by conventional techniques and 
near infrared-chemical imaging combined with multivariate curve resolution with alternating least 
squares is an attractive alternative. In this study, composition and spatial distribution of pellets 
components were determined after assessment of experimental parameters. The use of a 25 μm 
intermediate pixel size, an initial estimation matrix with instrumental signals for pure substances 
and individual matrices provided a model with explained variance of more than 99% and a value 
of 0.00263 for percentage of lack of fit. In addition, the similarity between the pure substances 
spectra and those recovered by the model were 0.9501 for sucrose, 0.9480 for starch, 0.9910 for 
ketoprofen and 0.5941 for SiO2. Chemical images were generated and show that the pellet is 
composed of an inert nucleus of starch and cellulose, surrounded by a ketoprofen layer. All this 
information was obtained quickly, in minutes, being an excellent alternative for pellets analysis.
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Introduction

One of the great challenges of pharmaceutical industry 
is the ability to have tools to determine product properties. 
These properties can define whether the drug is suitable for 
sale and consumption, or to check if the active pharmaceutical 
ingredient (API) and excipients are available. An analytical 
technique should be chosen based on its ability to detect and 
quantify different properties in a fast and easy way.1

Solid oral preparations are widely used among the 
forms of drugs presentation. Examples are pellets, small 
spherical structures with controlled particle size.2 Their 
production is usually made by agglomerating different 
substances as fine powders, but may also receive a coating 
film, and may incorporate drugs that are incompatible. This 
film coating may also contribute to aesthetic characteristics 
or for a uniform API distribution, avoiding concentration 
peaks on plasma, and intestinal mucosa aggression.3 
Such formulations may further be packaged in gelatin 
capsules or compacted as tablets.4,5 In addition, API 

dispersion in the medicine may affect its solubilization and 
bioavailability and, consequently, the drug efficacy.6 This 
sample heterogeneity cannot be assessed by conventional 
techniques such as high‑performance liquid chromatography 
(HPLC) or ultraviolet (UV), which determine only the 
overall concentrations of different species. Solid dispersions 
morphology can be evaluated by optical microscopy or 
scanning electron microscopy (SEM), however, without 
providing sample chemical information.7

The knowledge of the constituents distribution of these 
materials is very important and the hyperspectral images 
may help to determine the API properties in tablets, as 
spatial distribution and homogeneity. Hyperspectral images 
are, in a simplified way, spectral sets of a sample delimited 
region, obtained with an analytical technique capable of 
responding to the sample physicochemical properties. 
For image generation, sample area must be subdivided 
into several pixels and, for each one of these pixels, an 
absorption, emission or reflectance spectrum must be 
obtained, for example.8

A very useful technique for hyperspectral images 
generation is the infrared spectroscopy, especially in the 
near infrared region (NIR), between 13,000 to 4,000 cm-1.9 
In this regard, the near infrared-chemical imaging (NIR‑CI) 
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has as one of its characteristics operating with diffuse 
reflectance, directly on the sample surface.10 Because it is 
a non-destructive technique and requires little or no sample 
preparation,9 it has been recommended by US Food and 
Drug Administration (FDA)11 for pharmaceutical processes 
control.

Images generated by NIR-CI contain an immense 
amount of information in these spectra sets and their 
interpretation can be done with multivariate analysis 
methods. These methods can be either pattern recognition 
(such as principal component analysis, PCA), classification 
methods (such as linear discriminant analysis, LDA), or 
calibration methods (such as multivariate curve resolution, 
MCR).12 There are some examples of application of 
NIR‑CI13-17 in the pharmaceutical area, with very promising 
results. Acetylsalicylic acid (ASA) concentration maps 
on commercial tablet samples were obtained by MCR 
without a previous calibration step.18 Multivariate curve 
resolution with alternating least squares (MCR-ALS) 
works iteratively by optimizing concentration profiles 
and spectra (C and ST matrices) with previous constraints 
application. These restrictions are based on the chemical or 
mathematical knowledge about the data characteristics.19,20 
Instrumental data matrix (D) is decomposed by alternating 
least squares (ALS) algorithm in a relative concentration 
matrix of each pure substance (C) and another that refers to 
its spectra (S). The MCR-ALS expression can be described 
as D  =  CST  +  E, where E is the residue matrix. Thus, 
MCR-ALS method can predict compounds concentration 
in samples, being suitable for industrial processes use or 
even in drug development steps.21-27

A valuable information in pharmaceutical industry is 
knowing halves of a fractionated tablet have the same API 
amount, as demonstrated by Franch-Lage et al.22 Lorazepam 
tablets, an important antidepressant, usually present 
reduced size and only 1% in API mass. The verification 
of API and other 4 excipients spatial distribution was 
possible with hyperspectral spectroscopy and MCR, and 
the chemometric model proved no significant differences 
between the tablets halves.

In NIR-CI technique, there are three crucial steps that 
can affect analysis result: (i) data acquisition, with the 
correct sample preparation and instrumental irradiation 
conditions; (ii) careful choice of wavelengths and spectra 
preprocessing and (iii) with images to use for extracting 
studied system qualitative and quantitative information, 
such as API total concentration and distribution. If one of 
these steps is not properly performed, an erroneous system 
observation may result.

In this sense, Sabin et al.28 compared several 
chemometric methods (multivariate curve resolution, 

multiple linear regression, classical least squares and partial 
least squares) to evaluate the similarity of concentration 
maps obtained on carbamazepine tablets. Models were 
constructed and similarity was measured for the 6 
studied compounds predicted values. CLS, MCR and 
PLS models gave equivalent results, probably because 
these methods consider all variables in the calculations. 
Only the MLR method did not present equivalent results 
with the other methods studied. Another way to evaluate 
methods similarity are chemical images histograms, where 
concentrations frequencies in the pixels are arranged in 
a graph. These histograms show the number of relative 
concentration values separated by ranges and the similarity 
of their profiles indicates the image similarity.

Excipients and diclofenac API spatial distribution in 
a medicament was achieved with a data treatment step to 
remove low reflectance values, typical of regions outside 
the sample, and to convert the reflectance values to pseudo-
absorbance. Then, chemical images were generated by 
CLS, discriminating the presence and the concentrations 
of the constituents in the layers that constitute the pellet.29

However, for these analyses to be performed, some 
conditions must be optimized, such as spatial resolution. 
In NIR-CI, spatial resolution can be correlated with pixel 
size and should consider sample characteristics, such 
as particle size, and equipment characteristics, such as 
the ability to produce an intense signal to be detected.30 
Spectra type used to initialize the MCR-ALS model 
must also be considered to avoid that a probable local 
minimum is chosen as the system solution. Normally, initial 
estimations are constructed with an instrumental signal of 
pure components or with an estimate generated from the 
sample signal by chemometric tools capable of detecting 
the purest variables.24,31-33 Among these chemometric tools, 
we highlight the simple-to-use interactive self-modeling 
mixture analysis (SIMPLISMA)31,34 and the PURE 
function.19 Another possibility is the use of individual 
matrices, for one sample, or augmented matrices, with the 
signal of more than one sample. These augmented matrices 
can provide a greater amount of information, as well as 
solve problems related to rank-deficient matrices.33,35-37

Taking into account these precautions, we can verify 
that NIR-CI and chemometrics combination is an excellent 
alternative in pharmaceutical area, but several parameters 
must be optimized to obtain realistic and trustworthy 
chemical images. In this paper, we intend to study the 
effects of pixel size variation, initial estimation type and 
augmented matrix in pharmaceutical pellets analysis 
optimization by near infrared-chemical imaging (NIR-CI) 
and multivariate curve resolution with alternating least 
squares (MCR-ALS).
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Experimental

Samples

The samples used in this study were three commercial 
pellets (P1, P2 and P3), with same composition, containing 
the active ingredient ketoprofen, a non-steroidal anti-
inflammatory drug with anti-inflammatory and analgesic 
properties. Pellets consist of an inert core and layers that 
cover the central region, having a mean diameter of 900 μm.

For the sampling, pellets were cut in half with a razor 
blade in a magnifying glass (Carl Zeiss, Stemi DV4 model, 
8 to 32× magnification). For measurements, they were 
affixed in a glass plate using transparent double-sided tape 
to be monitored on PerkinElmer Spotlight 400N FT-NIR 
Imaging System.

Materials

Analytical grade reagents ketoprofen (Sigma-Aldrich, 
USA), starch (Synth, Brazil), sucrose (Synth, Brazil) and 
silicon dioxide (Sigma-Aldrich, USA) were also used for 
comparison of original and recovered signals by MCR‑ALS 
model.

Operating conditions

For the acquisition of pellet and pure substances spectra, 
the employed PerkinElmer Spotlight 400 N FT‑NIR 
Imaging System spectrometer operating conditions are 
described in Table 1.

Experimental data treatment

Spectra were obtained in reflectance mode (R) and 
converted to absorbance (log 1/R), then the standard 

normal variation (SNV)38 was applied as pre-processing, 
to minimize possible radiation scattering effects and 
changes caused by particle size. Data were also smoothed 
by Savitzky and Golay39 with a 19-point window for 
experimental noise removal.

To remove glass plate and adhesive tape spectra from 
the data set, a selection step was performed with PCA 
scores values of the mean centered data. Thus, a range of 
values of scores corresponding only to pellets spectra was 
selected. This process could be performed graphically with 
the Hyper-Tools package.40

With this new data set, MCR-ALS models were built, 
always with 4 components. Components number choice 
considered the results of a PCA with the mean-centered 
data, which explained more than 99% of the variance.

As an initial estimate to start MCR-ALS model, matrices 
were constructed with pure substances spectra obtained 
experimentally and also with purest variables estimated with 
chemometric tools, such as SIMPLISMA algorithm.34 In all 
calculations, constraints were applied, such as 500 iterations, 
0.1% maximum error, and no negativity for concentration.

All calculations were performed in Matlab R2016b41 
environment, with PLS Toolbox v. 8.1.142 and HYPER‑Tools 
package.40

Results and Discussion

Comparison of pixel size (6.25, 25 and 50 μm) effects in the 
MCR-ALS models results

After removal of non-pellet spectra, using the routine 
provided by Amigo,40 the data set spectra number was 
reduced from 43264 to 16137 (6.25 μm), 2704 to 1021 
(25 μm) and 676 to 284 (50 μm). In Figure 1, a graphic 
example of this selection step can be seen, for a 25 μm 
pixel size.

Table 1. Operating conditions of Spotlight 400N FT-NIR Imaging System spectrometer for pellets and pure substances analysis

Operating condition 6.25 µm 25 µm 50 µm

Resolution / cm-1 16 16 16

Scans number 32 32 32

Spectral range / cm-1 7800-4000 7800-4000 7800-4000

Pixel size / µm 6.25 25 50

Image area / µm 1300 × 1300 1300 × 1300 1300 × 1300

Image area in pixel number 208 × 208 52 × 52 26 × 26

Pure substances area / µm 75 × 75 300 × 300 600 × 600

Pure substances area in pixel number 12 × 12 12 × 12 12 × 12

Spectra number 43264 2704 676

Variables number 476 476 476
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A four-component model was created for each pixel 
size studied, and the four components of the model are the 
API and the excipients sucrose, starch and silicon dioxide 
(SiO2). In this specific study, a matrix was constructed 
containing the pure spectra of the 4 substances as initial 
estimate. Pure spectra were obtained under the same sample 
image operating conditions, with only a smaller sample 
area of 12 × 12 pixels (144 spectra).

MCR-ALS model basically decomposes original signal 
into an array containing the relative concentrations of 
the components (matrix C) and another with the spectral 
signals of those components (matrix S). When these signals 
are plotted next to the signals obtained by the analysis of 
their pure components, it is possible to compare if the 
profiles are coincident. The higher the match, the greater 
the model ability to recognize these less random signals 
in instrumental signals mixture. This comparison can be 
seen in Figure 2.

According to the Figure 2, we can initially verify that 
the signals obtained by the 6.25 μm pixel size are noisier 
and with less defined bands than for larger pixel size. This 
is due to the way in which the equipment selects the pixel 
size, by physical light passage restriction. When we use a 
smaller pixel size, less radiation reaches the sample and, 
consequently, less radiation reaches the detector. This 
situation causes a decrease in signal to noise ratio, when 
less system information can be modeled by the MCR-ALS 
model, which implies a less complete model. To avoid this, 
a larger number of scans should be used, which would make 

Figure 1. Generated image by PCA of (a) all pixel spectra and (b) after 
selection of only sample P1 pixels, in green, by using HYPER‑Tools 
routine.

Figure 2. Comparison for each pixel size of normalized pure substances spectra (blue) and recovered spectra by the MCR-ALS model (red) for (a, e, i) sucrose, 
(b, f, j) starch, (c, g, k) SiO2 and (d, h, l) ketoprofen.
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the analysis very time consuming, rendering it unattractive 
for practical purposes.

Signals observation for larger pixels indicates that 
there are no differences of spectral profiles between 25 and 
50 μm sizes. In these cases, bands are better defined and 
coincidental between the pure substances spectra and the 
recovered spectra, only with variations in intensities. These 
variations may be due, for example, to interactions between 
species in the pellet, which do not occur when analyzing 
the substances separately. For the SiO2 this does not occur, 
since it has a spectral profile without many characteristic 
bands. This is due to its low density, which generates a 
large radiation diffusion in its interior, not allowing an 
appreciable amount of signal to reach the detector.

A more elegant way of conferring similarity is by 
calculating the correlation coefficients (r2) between spectra 
(Table 2), which is related to the covariance matrix of 
each spectrum. In these cases, the compared spectra will 
be more similar when the values are close to unity. This 
can be observed for ketoprofen in the three pixel sizes, 
especially for larger pixels, with values higher than 0.9903, 
against 0.9597 of the smaller pixel. For sucrose and starch 
the same behavior is observed, with values higher than 
0.94, while at the 6.25 μm pixel the values are lower than 
0.8005. Finally, for SiO2 the values do not follow a direct 
trend with the pixel size variation, with the best value for 

the smallest pixel (0.9464) and worst value (0.6112) for 
the intermediate pixel size.

Another MCR-ALS result is the generation of a matrix 
with the relative concentrations of the system components 
(matrix C), which will provide the chemical images 
construction, as indicated in Figure 3.

Initially, the images at 6.25 μm pixel size show a 
projection to the upper image region, different from that 
obtained visually at the moment of the sample positioning 
in the equipment. This may indicate a possible equipment 
limitation, more sensitive to a sample angulation variation 
relative to the sample port axis, in situations where the 
signal magnitude approaches the instrumental limit of 
detection. Regarding the type of signal obtained, these 
results are consistent with those obtained by Ma and 

Table 2. Calculated correlation coefficients values (r2) between obtained 
spectra by the MCR-ALS model and those obtained for the pure substances 
at 6.25, 25 and 50 μm pixel sizes

Pixel size / 
µm

Correlation coefficient

Sucrose Starch SiO2 Ketoprofen

6.25 0.8005 0.8705 0.9464 0.9597

25 0.9607 0.9485 0.6112 0.9903

50 0.9836 0.9766 0.8751 0.9922

Figure 3. Distribution maps generated by MCR-ALS models with different pixel sizes (6.25, 25 and 50 μm) for the 4 components studied (warm colors 
indicate the presence and cold colors indicate components absence).
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Anderson,30 who studied the increase of the magnification 
in obtaining chemical images with NIR and realized that 
the spatial resolution increase did not provide additional 
information. Despite this restriction, images could be 
obtained, but without great agreement with larger pixels 
images. Thus, it is evident that there are quite distinct 
regions in the pellet. In the center, there is an inert region 
containing sucrose and starch. Inert pellet use as starting 
material for the interest compounds deposition is a common 
practice in the pharmaceutical industry.23,43,44 Immediately 
after this inert core, there is a layer containing the API, 
which appears in the image with an intense red color, 
demonstrating the great contribution of this species in 
this region. Finally, SiO2 appears to be more externally 
distributed in the sample, perhaps as a coating layer or to 
protect the pellet. However, as the conditions for obtaining 
an instrumental signal for this compound is not as good as 
for the others, some care must be taken with this component 
results.

To evaluate the MCR-ALS models quality, the 
percentage of variance explained (R2) and the percentage 
of lack of fit (LOF) were calculated. Those figures of merit 
were calculated as described by Jaumot et al.,20 and can be 
seen in Table 3.

The percentage of variance explained indicates 
how much of the original information, in the form of 
instrumental signal, is being described by the MCR-ALS 
model. When the calculated value is closer to 100%, the 
model created will be more representative of the original 
signals. Analysis of the obtained values for this parameter 
(Table 3) shows that both the model for the 25 and 50 μm 
pixel size can express more than 99% of variance explained. 
MCR-ALS model for 6.25 μm pixel size describes only 
91% of variance explained, which indicates that the use 
of a larger spatial resolution does not necessarily imply 
an increase in the MCR-ALS model capacity to describe 
the original information. This same trend is verified by 
the percentage of lack of fit values, which expresses the 
difference between the original data matrix (D) and the 

matrix reproduced by the MCR-ALS model (CST matrix).20 
As these values must be the smallest possible, the increase 
in spatial resolution cannot provide an improvement in the 
models according to this figure of merit. Percentage of lack 
of fit magnitude is 10-6 for the 50 μm pixel size, while for 
25 and 6.25 μm is 10-3 and 10-2, respectively.

According to the results analysis, the use of 6.25 μm 
pixel size should be discarded because it requires a much 
longer analysis time than for 25 and 50 μm pixels. Thus, 
it would be more appropriate to use the maximum pixel 
size, 50 μm, with shorter analysis times, since the spectral 
profile recovery trends, chemical images and figures of 
merit indicate its viability. However, it is necessary to 
balance between the analysis time and the generated image 
resolution. Thus, the use of an intermediate pixel size, 
25 μm, can provide adequate spectral recoveries and figures 
of merit with more detailed chemical images.

Comparison of the use or not of an initial estimation with 
pure substances instrumental data in the MCR-ALS results

As discussed in the previous section, the use of 
intermediate pixel provides adequate information and 
upcoming studies will be performed under this condition. 
One of these studies is about the type of initial estimation 
used to initialize the MCR-ALS model. When using the 
ALS algorithm, this step is critical to obtaining a solution 
that best describes the system. One of the implications 
of choosing a good initial estimate is to avoid a possible 
local minimum, which could lead to a solution that is not 
representative of the system.45,46

There are two possibilities of constructing an initial 
estimation matrix and one of them is with some previously 
known information, as pure substances signals obtained 
experimentally, under the same conditions in which the 
sample signal will be obtained. In this specific case, 
matrices containing 144 spectra were generated for each 
pure substance considered (sucrose, starch, silicon dioxide 
and ketoprofen). Other way to generate an initial estimate 
for ALS is to use some tool that can detect the purest 
variables within the entire sample signal. An example 
is the simple-to-use interactive self-modeling mixture 
analysis (SIMPLISMA)34 or the PURE function, provided 
by Tauler,19,47 which are widely used for the purest variables 
detection. Thus, the MCR-ALS can be started and the 
iterations can be developed, taking a model with smaller 
errors.

With these estimates, MCR-ALS models were 
constructed considering each of them and the spectra 
provided by the models can be seen in Figure 4. In this 
Figure, the spectra recovered by the model can be compared 

Table 3. Percentage of variance explained (R2) and percentage of lack 
of fit (LOF) values of the MCR-ALS model for each pixel size (6.25, 
25 and 50 μm)

Figure of merit
Pixel size

6.25 µm 25 µm 50 µm

Percentage of variance 
explained (R2) / %

91.19 99.82 99.88

Percentage of lack of fit 
(LOF) / %

0.0381 0.00263 0.00000725
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to each other and to the pure substances spectra profiles 
obtained experimentally.

The obtained profiles for the substances sucrose, starch 
and ketoprofen present a fair similarity tendency, with 
small variations of intensity for normalized signals and few 
non-coincident bands. This is shown in the values of the 
correlation coefficients between the spectra recovered by the 
MCR-ALS models and the spectra obtained experimentally 
from the pure substances, which are between 0.9485 and 
0.9903. Comparison of the correlation coefficients values 
for spectra recovered between the models with distinct 
types of initial estimation also indicates a good concordance 
in the three substances, with values of r2 in the range of 
0.9609 and 0.9936. These values are shown in Table 4.

By observing the profiles for SiO2 (Figure 4c), there 
is only a trend of similarity in the spectra slope, without 
coincident bands. Correlation coefficient values are lower 
than for other substances, 0.6112 for the model with the 
experimental estimate of pure substances signal, 0.9184 for 
the model that employed pure function and 0.8466 between 
the models. As discussed previously, a likely explanation 
for these results is the large diffusion of SiO2 radiation, 
which limits that an intense signal reaches the detector. 
Another possibility is that this component is present in 
low concentration, reducing the ability of technique to 
discriminate the analyte signal from instrumental noise.

In the chemical images analysis, we can see that there 
are no significant differences between the images generated 
for the two approaches to construct the estimates that will 
start the models (Figure 5). Trends are the same, from an 
inert central layer containing starch and sucrose, an attached 
layer with high API concentration and a non-uniform 
distribution of SiO2.

Based on these results, we can affirm that there are 
no significant differences in using any approach to the 
generation of the initial estimates. Table 5 shows the results 
for the explained variance and the percentage of lack of fit 
for both models. Models can explain more than 99% of the 

original system information, with values of percentage of 
lack of fit less than zero, from 0.00263 for the model that 
uses instrumental signals of pure substances and 0.00940 
for the model that uses pure function.

Finally, if the choice is practical, the PURE routine 
provides a quicker and faster analysis, since it eliminates 
the need to analyze pure substances individually. However, 
it is necessary to compare the signal generated by the 
model with some characteristic signal of the components 
that allows their characterization. In drugs, these signals 
are more easily obtained because the formulations are 
simpler, and the pure substances are available. Although 
the use of this type of instrumental signal causes this 
approach to take a little longer, it is preferable to facilitate 
the characterization of the signals obtained.

Comparison of the use of individual or augmented matrices 
in the results of MCR-ALS

Now that the pixel size has been chosen (25 μm), 
as well as the type of signal used to generate the initial 
estimation for the ALS algorithm, a final consideration 
can be made. For those situations where more than one 
sample replica is available, one may choose to create an 
individual model for each of these replicas or a single 

Figure 4. Comparison of the normalized spectra of the pure substances (blue) and reconstructed by the MCR model with instrumental estimation of the 
pure substances (black) and initial estimation obtained by the PURE function (red) for (a) sucrose; (b) starch; (c) SiO2; (d) ketoprofen.

Table 4. Calculated values of the correlation coefficients (r2) between 
the pure substances spectra and those obtained by the MCR-ALS model 
with and without initial estimation with instrumental signals of the pure 
substances, and among the models

Component

Pure substances spectra
Between 
modelsWith instrumental 

signal
Using PURE 

function

Sucrose 0.9607 0.9866 0.9860

Starch 0.9485 0.9849 0.9609

SiO2 0.6112 0.9184 0.8466

Ketoprofen 0.9903 0.9831 0.9936
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model containing the instrumental signals of all such 
replicas. In this second case, an augmented column-wise 
data matrix is created, and after the model is made, this 
information is separated so that the images of each one 
of these samples can be generated. With this approach, 
the expected advantage would be a greater amount of 

information associated to the system, which could result 
in a model with improved characteristics.48

In this study, 3 different pellets were analyzed and 
for each one was constructed a matrix containing 1021 
spectra for pellet P1, 971 for P2 and 1305 for P3. The 
augmented matrix containing the 3 pellet signals had 
the size of 3297 rows and 476 columns, with lines 1 
through 1021 containing the information from sample P1,  
lines 1022 to 1992 from sample P2 and 1993 to 3297 from 
sample P3. After the models were made, the recovered 
signals profiles could be compared in Figure 6. As in the 
other cases, the results are very similar, with variations 
in signal intensity after normalization. However, several 
bands that are in the spectrum of pure substances are 
present in those recovered spectra, allowing identification 
of the components.

Figure 5. Distribution maps images generated by the MCR-ALS models (a-d) with the use of initial signal estimation of pure substances and (e-h) without 
the instrumental signal of pure substances for the 4 components studied (warm colors indicate presence and cold colors indicate the component absence).

Table 5. Values of percentage of variance explained (R2) and percentage 
of lack of fit (LOF) of the MCR-ALS models with initial estimation with 
instrumental signal and with signals obtained by PURE function

Figure of merit

Initial estimation

With instrumental 
signal

Using PURE 
function

Variance explained (R2) / % 99.82 99.79

Lack of fit (LOF) / % 0.00263 0.00940

Figure 6. Comparison of the normalized spectra of pure substances (blue) and reconstructed by the MCR-ALS model with individual image for the sample 
P1 (red) and with increased matrix (black) for (a) sucrose; (b) starch; (c) SiO2 and (d) ketoprofen.
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Again, the profiles for SiO2 are the only ones different 
than expected, which is explained by the difficulties 
discussed above. Correlation coefficients values for the 
component are 0.6112 and 0.5848 for the individual and 
augmented matrix, respectively (Table 6). We can verify 
that the spectra recovered by both models are very similar, 
with r2 values higher than 0.9711.

Chemical images analysis for each component can be 
seen in Figure 7 and indicate the same distribution trend 
of components in the pellet, regardless of how the model 
was constructed.

The same type of information can be extracted from 
Table 7, which presents the values of percentage of variance 
explained and percentage of lack of fit, which are very 
close. This indicates that the option for a larger number of 
samples, in this specific case, does not imply an increment 
in the model that justifies the longer time that should be 

used for its execution. Therefore, it is recommended to use 
a model with individual images.

Results for samples P1, P2 and P3 under optimized 
experimental conditions

The last step of this study was the verification of the 
feasibility of use in other pellet replicates. For this, two 
new samples were submitted to the same treatment and the 
signals are compared in Figure 8. We can observe a great 
agreement between the signals obtained for the 3 samples 
(P1, P2, and P3) and between those signals and those of the 
pure substances. The only exception is the sucrose spectrum 
for sample P3 (Figure 8a), which has a different band near 
6000 cm-1, associated with ketoprofen.

This trend is confirmed by the analysis of the 
correlation coefficients values (Table 8). All values are 
very close, except for sucrose in sample P3, which is 
0.9076. The low values for the SiO2 component, already 
expected by their characteristics, demonstrate the 
difficulty of determining the ingredient in a formulation 
by NIR-CI and MCR-ALS.

Table 6. Calculated correlation coefficients values (r2) between the pure 
substances spectra and those obtained by the MCR-ALS model with the 
use of individual matrix and augmented matrix

Component

Pure substances spectra
Between 
modelsIndividual 

matrix
Augmented 

matrix

Sucrose 0.9607 0.9846 0.9931

Starch 0.9485 0.9813 0.9711

SiO2 0.6112 0.5848 0.9812

Ketoprofen 0.9903 0.9895 0.9994

Figure 7. Distribution maps generated by MCR-ALS models (a-d) with the use of individual matrix for the sample P1 and (e-h) with matrix augmented 
for the 4 components studied (the warm colors indicate the presence and the cold colors indicate the absence of the components).

Table 7. Values of percentage of variance explained (R2) and percentage 
of lack of fit (LOF) of the MCR-ALS models with individual matrix and 
with augmented matrix

Figure of merit
Individual 

matrix
Augmented 

matrix

Variance explained (R2) / % 99.82 99.83

Lack of fit (LOF) / % 0.00263 0.00632
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sucrose and starch, a very uniform layer of ketoprofen and 
a very uneven distribution of silicon dioxide.

Another very interesting way to verify the distribution 
of these species in drug is with histograms (Figure 10), 
where the relative concentrations of each component 
in each pixel are expressed. These histograms contain 
the counts of each value in each range of relative 
concentration and the more similar their profiles, the 
closer the components distributions in each sample 
should be. Although not identical, the profiles of the 
histograms are similar, indicating that the images are 
quite equivalent.

Figure 8. Comparison of the normalized spectra of pure substances (blue) and reconstructed by the MCR-ALS model for replicates P1 (magenta), P2 (red) 
and P3 (black) for (a) sucrose; (b) starch; (c) SiO2 and (d) ketoprofen.

Table 8. Calculated correlation coefficients values (r2) between the pure 
substances spectra and those obtained by the MCR-ALS model for the 
samples replicates P1, P2 and P3

Component Sample P1 Sample P2 Sample P3

Sucrose 0.9607 0.9820 0.9076

Starch 0.9485 0.9437 0.9518

SiO2 0.6112 0.6066 0.5644

Ketoprofen 0.9903 0.9947 0.9881

Figure 9. Comparison of the distribution map images generated by the MCR-ALS models for the replicates (a-d) P1, (e-h) P2 and (i-l) P3 for the 4 components 
studied (warm colors indicate presence and cold colors indicate absence of components).

Finally, the comparison of the chemical distribution 
images of components (Figure 9) reproduces the trend 
pointed out in the first sample. There is an inert core of 
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Although the sample P3 apparently has a cut a little 
distant from its center, the results are consistent with 
the others, whose cut is more in the central region. This 
indicates that the technique is robust to small variations in 
the sample cut. The comparison of the values of percentage 
of variance explained (R2) and percentage of lack of fit 
(LOF) corroborate this information, since the figures of 
merit do not present significant variations (Table 9), the 
models being equivalent.

Conclusions

Combination of NIR image spectroscopy and 
multivariate curve resolution is extremely efficient in 
solving problems involving components identification 
and their distributions in pharmaceutical samples as 
used in this study. Using 25 μm intermediate size pixels, 
this information could be obtained quickly, with models 

Table 9. Percentage of variance explained (R2) and percentage of lack of 
fit (LOF) values of the MCR-ALS models for the replicates P1, P2 and P3

Figure of merit Sample P1 Sample P2 Sample P3

Variance explained (R2) / % 99.82 99.86 99.87

Lack of fit (LOF) / % 0.00263 0.00150 0.00434

Figure 10. Histograms for the relative image concentrations of the 4 components of the replicates (a-d) P1; (e-h) P2 and (i-l) P3. Relative concentrations 
ranges are expressed on the x-axis and relative concentration counts, on the y-axis.

containing more than 99% of the original information and 
0.00263 for a percentage of lack of fit. Species presence 
could be verified by comparing the signals recovered by 
the chemometric model with those obtained instrumentally 
from the pure reagents, with a mean similarity of 0.9501 for 
sucrose, 0.9480 for starch and 0.9910 for ketoprofen. Even 
in the case of SiO2, whose mean correlation coefficient was 
only 0.5941, there is a tendency to associate the compound 
with the recovered signal.

Chemical distribution images of the species allow the 
identification of a highly homogeneous layer of API that 
surrounds an inert nucleus containing the excipients starch 
and sucrose. Apparently, there is also a heterogeneous layer 
of silicon dioxide, which surrounds the pellet, perhaps 
for its protection. The models constructed for the studied 
pellets show that the images are obtained equally either 
if the data were obtained for a single replica (individual 
matrix) or for more than one (augmented matrix).

After optimization, the best conditions were the use 
of a 25 μm intermediate pixel, an initial estimation matrix 
with instrumental signals for pure substances and individual 
matrices, that provides a MCR-ALS model with possibility 
to explain the composition and spatial distribution of pellets 
components for each pellet sample, in few minutes and 
without waste generation.
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